Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators

Abstract

The synchronization of multiple nanocontact spin-torque oscillators (NC-STOs) is mediated by propagating spin waves (SWs). Although it has been shown that the Oersted field generated in the vicinity of the NC can dramatically alter the emission pattern of SWs, its role in the synchronization behaviour of multiple NCs has not been considered so far. Here we investigate the synchronization behaviour in multiple NC-STOs oriented either vertically or horizontally, with respect to the in-plane component of the external field. Synchronization is promoted (impeded) by the Oersted field landscape when the NCs are oriented vertically (horizontally) due to the highly anisotropic SW propagation. Not only is robust synchronization between two oscillators observed for separations larger than 1,000 nm, but synchronization of up to five oscillators, a new record, has been observed in the vertical array geometry. Furthermore, the synchronization can no longer be considered mutual in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device structure.
Figure 2: Horizontal NC array characterization.
Figure 3: Vertical NC array.
Figure 4: Vertical NC array simulations for case I.
Figure 5: Vertical NC array simulations for case II.
Figure 6: Vertical NC array experiments for synchronization of two NCs with large cc separation and synchronization of up to 5 NCs.

Similar content being viewed by others

References

  1. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2003).

  2. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    Article  CAS  Google Scholar 

  3. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  CAS  Google Scholar 

  4. Rippard, W., Pufall, M., Kaka, S., Russek, S. & Silva, T. Direct-current induced dynamics in Co80Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004).

    Article  CAS  Google Scholar 

  5. Krivorotov, I. N. et al. Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228–231 (2005).

    Article  CAS  Google Scholar 

  6. Silva, T. J. & Rippard, W. H. Developments in nano-oscillators based upon spin-transfer point-contact devices. J. Magn. Magn. Mater. 320, 1260–1271 (2008).

    Article  CAS  Google Scholar 

  7. Kim, J.-V. in Solid State Physics. Vol. 63 (eds Camley, R. E. & Stamps, R. L.) Ch. 4, 217–294 (Academic Press, 2012).

    Google Scholar 

  8. Bonetti, S., Muduli, P., Mancoff, F. & Åkerman, J. Spin torque oscillator frequency versus magnetic field angle: the prospect of operation beyond 65 GHz. Appl. Phys. Lett. 94, 102507 (2009).

    Article  Google Scholar 

  9. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  10. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  11. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article  CAS  Google Scholar 

  12. Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).

    Article  CAS  Google Scholar 

  13. Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).

    Article  CAS  Google Scholar 

  14. Dumas, R. et al. Recent advances in nanocontact spin-torque oscillators. IEEE Trans. Magn. 50, 4100107 (2014).

    Google Scholar 

  15. Ruotolo, A. et al. Phase-locking of magnetic vortices mediated by antivortices. Nature Nanotech. 4, 528–532 (2009).

    Article  CAS  Google Scholar 

  16. Sani, S. et al. Mutually synchronized bottom-up multi-nanocontact spin torque oscillators. Nature Commun. 4, 2731 (2013).

    Article  CAS  Google Scholar 

  17. Hoefer, M. A., Silva, T. J. & Stiles, M. D. Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact. Phys. Rev. B 77, 144401 (2008).

    Article  Google Scholar 

  18. Dumas, R. K. et al. Spin-wave-mode coexistence on the nanoscale: A consequence of the oersted-field-induced asymmetric energy landscape. Phys. Rev. Lett. 110, 257202 (2013).

    Article  Google Scholar 

  19. Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nature Mater. 9, 984–988 (2010).

    Article  CAS  Google Scholar 

  20. Mohseni, S. M. et al. Spin torque generated magnetic droplet solitons. Science 339, 1295–1298 (2013).

    Article  CAS  Google Scholar 

  21. Slavin, A. & Tiberkevich, V. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005).

    Article  Google Scholar 

  22. Bonetti, S. et al. Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. Phys. Rev. Lett. 105, 217204 (2010).

    Article  Google Scholar 

  23. Demidov, V. E. et al. Spin-current nano-oscillator based on nonlocal spin injection. Sci. Rep. 5, 8578–(2015).

    Article  CAS  Google Scholar 

  24. Slonczewski, J. C. Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261–L268 (1999).

    Article  CAS  Google Scholar 

  25. Madami, M. et al. Direct observation of a propagating spin wave induced by spin-transfer torque. Nature Nanotech. 6, 635–638 (2011).

    Article  CAS  Google Scholar 

  26. Slavin, A. & Tiberkevich, V. Theory of mutual phase locking of spin-torque nanosized oscillators. Phys. Rev. B 74, 104401 (2006).

    Article  Google Scholar 

  27. Pufall, M. R., Rippard, W. H., Russek, S. E., Kaka, S. & Katine, J. A. Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators. Phys. Rev. Lett. 97, 087206 (2006).

    Article  CAS  Google Scholar 

  28. Madami, M. et al. Propagating spin waves excited by spin-transfer torque: A combined electrical and optical study. Phys. Rev. B 92, 024403 (2015).

    Article  Google Scholar 

  29. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article  Google Scholar 

  30. Kendziorczyk, T., Demokritov, S. O. & Kuhn, T. Spin-wave-mediated mutual synchronization of spin-torque nano-oscillators: A micromagnetic study of multistable phase locking. Phys. Rev. B 90, 054414 (2014).

    Article  Google Scholar 

  31. Pogoryelov, Y. et al. Frequency modulation of spin torque oscillator pairs. Appl. Phys. Lett. 98, 192501 (2011).

    Article  Google Scholar 

  32. Lee, I. et al. Nanoscale scanning probe ferromagnetic resonance imaging using localized modes. Nature 466, 845–848 (2010).

    Article  CAS  Google Scholar 

  33. Urazhdin, S. et al. Nanomagnonic devices based on the spin-transfer torque. Nature Nanotech. 9, 509–513 (2014).

    Article  CAS  Google Scholar 

  34. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D: Appl. Phys. 43, 264001 (2010).

    Article  Google Scholar 

  35. Macià, F., Hoppensteadt, F. C. & Kent, A. D. Spin wave excitation patterns generated by spin torque oscillators. Nanotechnology 25, 045303 (2014).

    Article  Google Scholar 

  36. Izhikevich, E. M. & Hoppensteadt, F. C. Polychronous wavefront computations. Int. J. Bifurcat. Chaos 19, 1733–1739 (2009).

    Article  Google Scholar 

  37. Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nature Mater. 13, 11–20 (2014).

    Article  CAS  Google Scholar 

  38. Fell, J. & Axmacher, N. The role of phase synchronization in memory processes. Nature Rev. Neurosci. 12, 105 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission FP7-ICT-2011 contract No. 317950 “MOSAIC”. It was also supported by the European Research Council (ERC) under the European Community's Seventh Framework Programme (FP/2007-2013)/ERC Grant 307144 “MUSTANG”. Support from the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), and the Knut and Alice Wallenberg Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

A.H. and P.D. fabricated the devices and A.H. performed all the electrical measurements. A.H. and E.I. performed the micromagnetic simulations. R.K.D. and J.Å. initiated and supervised the project. All authors contributed to the data analysis and co-wrote the manuscript.

Corresponding author

Correspondence to R. K. Dumas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 383 kb)

Supplementary Movie 1

Supplementary Movie 1 (MP4 10996 kb)

Supplementary Movie 1

Supplementary Movie 2 (MP4 11204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houshang, A., Iacocca, E., Dürrenfeld, P. et al. Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. Nature Nanotech 11, 280–286 (2016). https://doi.org/10.1038/nnano.2015.280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing