Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetic vortex cores as tunable spin-wave emitters

Abstract

The use of spin waves as information carriers in spintronic devices can substantially reduce energy losses by eliminating the ohmic heating associated with electron transport. Yet, the excitation of short-wavelength spin waves in nanoscale magnetic systems remains a significant challenge. Here, we propose a method for their coherent generation in a heterostructure composed of antiferromagnetically coupled magnetic layers. The driven dynamics of naturally formed nanosized stacked pairs of magnetic vortex cores is used to achieve this aim. The resulting spin-wave propagation is directly imaged by time-resolved scanning transmission X-ray microscopy. We show that the dipole-exchange spin waves excited in this system have a linear, non-reciprocal dispersion and that their wavelength can be tuned by changing the driving frequency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of a spin wave propagating along ek.
Figure 2: Sketches and scanning transmission X-ray microscopy images of magnetic vortices.
Figure 3: Time-resolved scanning transmission X-ray microscopy images of spin-wave emission from magnetic vortex cores (sample 1).
Figure 4: Dispersion f(k) of collective spin waves propagating perpendicular to the direction of static magnetization in a trilayer where two in-plane ferromagnetic layers are antiferromagnetically coupled via a non-magnetic interlayer.
Figure 5: Pulsed excitation of spin waves in the two samples containing magnetic vortex pairs with opposite circulations.

Similar content being viewed by others

References

  1. Bloch, F. Zur theorie des ferromagnetismus. Z. Phys. 61, 206–219 (1930).

    Article  CAS  Google Scholar 

  2. Holstein, T. & Primakoff, H. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098–1113 (1940).

    Article  Google Scholar 

  3. Dyson, F. J. General theory of general spin wave interactions. Phys. Rev. 102, 1217–1230 (1956).

    Article  Google Scholar 

  4. Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC, 1996).

    Google Scholar 

  5. Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nature Mater. 9, 984–988 (2010).

    Article  CAS  Google Scholar 

  6. Madami, M. et al. Direct observation of a propagating spin wave induced by spin-transfer torque. Nature Nanotech. 6, 635–638 (2011).

    Article  CAS  Google Scholar 

  7. Voigt, K. et al. Realization of a spin-wave multiplexer. Nature Commun. 5, 3727 (2014).

    Article  Google Scholar 

  8. Yu, H. et al. Omnidirectional spin-wave nanograting coupler. Nature Commun. 4, 2702 (2013).

    Article  Google Scholar 

  9. Macià, F., Backes, D. & Kent, A. D. Stable magnetic droplet solitons in spin-transfer nanocontacts. Nature Nanotech. 9, 992–996 (2014).

    Article  Google Scholar 

  10. Stancil, D. D. Theory of Magnetostatic Waves Ch. 5 (Springer, 1993).

    Book  Google Scholar 

  11. Demidov, V. E. et al. Excitation of short-wavelength spin waves in magnonic waveguides. Appl. Phys. Lett. 99, 082507 (2011).

    Article  Google Scholar 

  12. Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    Article  CAS  Google Scholar 

  13. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  14. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  15. Tsoi, M. et al. Generation and detection of phase-coherent current-driven magnons in magnetic multilayers. Nature 406, 46–48 (2000).

    Article  CAS  Google Scholar 

  16. Slonczewski, J. C. Exitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261–L268 (1999).

    Article  CAS  Google Scholar 

  17. Hoefer, M. A., Silva, T. J. & Stiles, M. D. Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact. Phys. Rev. B 77, 144401 (2008).

    Article  Google Scholar 

  18. Bonetti, S. et al. Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. Phys. Rev. Lett. 105, 217204 (2010).

    Article  Google Scholar 

  19. Slavin, A. & Tiberkevich, V. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005).

    Article  Google Scholar 

  20. Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nature Mater. 11, 1028–1031 (2012).

    Article  CAS  Google Scholar 

  21. Urazhdin, S. et al. Nanomagnonic devices based on the spin-transfer torque. Nature Nanotech. 9, 509–513 (2014).

    Article  CAS  Google Scholar 

  22. Kittel, C. Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21, 541 (1949).

    Article  Google Scholar 

  23. Feldtkeller, E. & Thomas, H. Struktur und energie von blochlinien in dünnen ferromagnetischenen schichten. Phys. Kondens. Materie 4, 8–14 (1965).

    CAS  Google Scholar 

  24. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

    Article  CAS  Google Scholar 

  25. Tretiakov, O. A. & Tchernyshyov, O. Vortices in thin ferromagnetic films and the skyrmion number. Phys. Rev. B 75, 012408 (2007).

    Article  Google Scholar 

  26. Guslienko, K. Y. Magnetic vortex state stability, reversal and dynamics in restricted geometries. J. Nanosci. Nanotech. 8, 2745–2760 (2008).

    Article  CAS  Google Scholar 

  27. Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).

    Article  Google Scholar 

  28. Völkel, A. R., Wysin, G. M., Mertens, F. G., Bishop, A. R. & Schnitzer, H. J. Collective-variable approach to the dynamics of nonlinear magnetic excitations with application to vortices. Phys. Rev. B 50, 12711–12720 (1994).

    Article  Google Scholar 

  29. Choe, S.-B. et al. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004).

    Article  CAS  Google Scholar 

  30. Vansteenkiste, A. et al. X-ray imaging of the dynamic magnetic vortex core deformation. Nature Phys. 5, 332–334 (2009).

    Article  CAS  Google Scholar 

  31. Buess, M. et al. Fourier transform imaging of spin vortex eigenmodes. Phys. Rev. Lett. 93, 077207 (2004).

    Article  CAS  Google Scholar 

  32. Perzlmaier, K. et al. Spin-wave eigenmodes of permalloy squares with a closure domain structure. Phys. Rev. Lett. 94, 057202 (2005).

    Article  Google Scholar 

  33. Kammerer, M. et al. Magnetic vortex core reversal by excitation of spin waves. Nature Commun. 2, 279 (2011).

    Article  Google Scholar 

  34. Buchanan, K. et al. Magnetic remanent states and magnetization reversal in patterned trilayer nanodots. Phys. Rev. B 72, 134415 (2005).

    Article  Google Scholar 

  35. Wintz, S. et al. Control of vortex pair states by post-deposition interlayer exchange coupling modification. Phys. Rev. B 85, 134417 (2012).

    Article  Google Scholar 

  36. Guslienko, K. Y. u., Buchanan, K. S., Bader, S. D. & Novosad, V. Dynamics of coupled vortices in layered magnetic nanodots. Appl. Phys. Lett. 86, 223112 (2005).

    Article  Google Scholar 

  37. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986).

    Article  Google Scholar 

  38. Nolle, D. et al. Unique characterization possibilities in the ultra high vacuum scanning transmission X-ray microscope (UHV-STXM) ‘MAXYMUS’ using a rotatable permanent magnetic field up to 0.22 T. Rev. Sci. Instrum. 83, 046112 (2012).

    Article  CAS  Google Scholar 

  39. Raabe, J. et al. PolLux: a new facility for soft X-ray spectromicroscopy at the Swiss light source. Rev. Sci. Instrum. 79, 113704 (2008).

    Article  CAS  Google Scholar 

  40. Cherepov, S. S. et al. Core–core dynamics in spin vortex pairs. Phys. Rev. Lett. 109, 097204 (2012).

    Article  CAS  Google Scholar 

  41. Hänze, M., Adolff, C. F., Velten, S., Weigand, M. & Meier, G. Two-body problem of core-region coupled magnetic vortex stacks. Phys. Rev. B 93, 054411 (2016).

    Article  Google Scholar 

  42. Damon, R. W. & Eshbach, J. R. Magnetostatic modes of a ferromagnetic slab. J. Phys. Chem. Solids 19, 308–320 (1961).

    Article  Google Scholar 

  43. Grünberg, P. Magnetostatic spin-wave modes of a heterogeneous ferromagnetic double layer. J. Appl. Phys. 52, 6824 (1981).

    Article  Google Scholar 

  44. Landau, L. & Lifshitz, E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion. 8, 153–169 (1935).

    Google Scholar 

  45. Scheinfein, M. R. LLG Micromagnetics Simulator; http://llgmicro.home.mindspring.com

  46. Kravchuk, V. P., Gaididei, Y. & Sheka, D. D. Nucleation of a vortex–antivortex pair in the presence of an immobile magnetic vortex. Phys. Rev. B 80, 100405(R) (2009).

    Article  Google Scholar 

  47. Lee, K. S. & Kim, S. K. Radiation of spin waves from magnetic vortex cores by their dynamic motion and annihilation processes. Appl. Phys. Lett. 87, 192502 (2005).

    Article  Google Scholar 

  48. Hertel, R., Gliga, S., Fähnle, M. & Schneider, C. M. Ultrafast nanomagnetic toggle switching of vortex cores. Phys. Rev. Lett. 98, 117201 (2007).

    Article  CAS  Google Scholar 

  49. Schütz, G. et al. Absorption of circularly polarized X rays in iron. Phys. Rev. Lett. 58, 737–740 (1987).

    Article  Google Scholar 

  50. Gilbert, T. L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443–3449 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Puzic, K.W. Chou and M.-Y. Im for their contributions to the preparation of this work, C. Quitmann, H. Stoll, G. Schütz, M. Curcic, R. Mattheis, J. McCord, S. Gemming, V. Sluka, K. Schultheiss and R. Hübner for their support and discussions, as well as V. Kühn, J. Kerbusch and K. Kirsch for their assistance in sample fabrication. Most experiments were performed at the Maxymus endstation at BESSY2, HZB (Berlin, Germany). The authors acknowledge HZB for the allocation of synchrotron radiation beam time. Some experiments were performed at the Pollux endstation at SLS, PSI (Villigen, Switzerland). Pollux is financed by BMBF under contracts nos. 05KS4WE1/6 and 05KS7WE1. Technical support by M. Bechtel and B. Sarafimov at the scanning transmission X-ray microscopy set-ups is gratefully acknowledged. This work was supported in part (V.T. and A.S.) by a grant from DARPA MTO/MESO (nos. N66001-11-1-4114), grant no. ECCS-1305586 from the National Science Foundation, and by contracts from the US Army TARDEC, RDECOM. V.T. and A.S. acknowledge the Center for NanoFerroic Devices (CNFD) and the Nanoelectronics Research Initiative (NRI) for partial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.W., M.W. and J.R. performed the experiments. S.W. fabricated the samples and performed the simulations. V.T. and A.S. calculated the dispersion relations. S.W. and A.S. wrote the manuscript. All authors discussed the data and commented on the manuscript.

Corresponding author

Correspondence to Sebastian Wintz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2973 kb)

Supplementary information

Supplementary Movie 1 (MOV 635 kb)

Supplementary information

Supplementary Movie 2 (MOV 693 kb)

Supplementary information

Supplementary Movie 3 (MOV 648 kb)

Supplementary information

Supplementary Movie 4 (MOV 659 kb)

Supplementary information

Supplementary Movie 5 (MOV 315 kb)

Supplementary information

Supplementary Movie 6 (MOV 221 kb)

Supplementary information

Supplementary Movie 7 (MOV 305 kb)

Supplementary information

Supplementary Movie 8 (MOV 228 kb)

Supplementary information

Supplementary Movie 9 (MOV 230 kb)

Supplementary information

Supplementary Movie 10 (MOV 218 kb)

Supplementary information

Supplementary Movie 11 (MOV 171 kb)

Supplementary information

Supplementary Movie 12 (MOV 214 kb)

Supplementary information

Supplementary Movie 13 (MOV 216 kb)

Supplementary information

Supplementary Movie 14 (MOV 218 kb)

Supplementary information

Supplementary Movie 15 (MOV 211 kb)

Supplementary information

Supplementary Movie 16 (MOV 296 kb)

Supplementary information

Supplementary Movie 17 (MOV 208 kb)

Supplementary information

Supplementary Movie 18 (MOV 200 kb)

Supplementary information

Supplementary Movie 19 (MOV 14693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wintz, S., Tiberkevich, V., Weigand, M. et al. Magnetic vortex cores as tunable spin-wave emitters. Nature Nanotech 11, 948–953 (2016). https://doi.org/10.1038/nnano.2016.117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing