Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Doxycycline-dependent photoactivated gene expression in eukaryotic systems

Abstract

High spatial and temporal resolution of conditional gene expression is typically difficult to achieve in whole tissues or organisms. We synthesized two reversibly inhibited, photoactivatable ('caged') doxycycline derivatives with different membrane permeabilities for precise spatial and temporal light-controlled activation of transgenes based on the 'Tet-on' system. After incubation with caged doxycycline or caged cyanodoxycycline, we induced gene expression by local irradiation with UV light or by two-photon uncaging in diverse biological systems, including mouse organotypic brain cultures, developing mouse embryos and Xenopus laevis tadpoles. The amount of UV light needed for induction was harmless as we detected no signs of toxicity. This method allows high-resolution conditional transgene expression at different spatial scales, ranging from single cells to entire complex organisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caged doxycycline or caged cyanodoxycycline and photoactivated gene expression.
Figure 2: Photoactivation of caged doxycycline in hippocampal cultures of double-transgenic CIG-tGFP mice.
Figure 3: Photoactivation of caged cyanodoxycycline in hippocampal cultures.
Figure 4: Photoactivated gene expression in living organisms.

Similar content being viewed by others

References

  1. Cambridge, S.B., Davis, R.L. & Minden, J.S. Drosophila mitotic domain boundaries as cell fate boundaries. Science 277, 825–828 (1997).

    Article  CAS  Google Scholar 

  2. Minden, J., Namba, R., Mergliano, J. & Cambridge, S. Photoactivated gene expression for cell fate mapping and cell manipulation. Sci. STKE 2000, PL1 (2000).

    Article  CAS  Google Scholar 

  3. Ando, H., Furuta, T., Tsien, R.Y. & Okamoto, H. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat. Genet. 28, 317–325 (2001).

    Article  CAS  Google Scholar 

  4. Monroe, W.T., McQuain, M.M., Chang, M.S., Alexander, J.S. & Haselton, F.R. Targeting expression with light using caged DNA. J. Biol. Chem. 274, 20895–20900 (1999).

    Article  CAS  Google Scholar 

  5. Tang, X., Swaminathan, J., Gewirtz, A.M. & Dmochowski, I.J. Regulating gene expression in human leukemia cells using light-activated oligodeoxynucleotides. Nucleic Acids Res. 36, 559–569 (2008).

    Article  CAS  Google Scholar 

  6. Lin, W., Albanese, C., Pestell, R.G. & Lawrence, D.S. Spatially discrete, light-driven protein expression. Chem. Biol. 9, 1347–1353 (2002).

    Article  CAS  Google Scholar 

  7. Link, K.H. et al. Photo-caged agonists of the nuclear receptors RARgamma and TRbeta provide unique time-dependent gene expression profiles for light-activated gene patterning. Bioorg. Med. Chem. 12, 5949–5959 (2004).

    Article  CAS  Google Scholar 

  8. Shi, Y. & Koh, J.T. Light-activated transcription and repression by using photocaged SERMs. ChemBioChem 5, 788–796 (2004).

    Article  CAS  Google Scholar 

  9. Hayashi, K. et al. Caged gene-inducer spatially and temporally controls gene expression and plant development in transgenic Arabidopsis plant. Bioorg. Med. Chem. Lett. 16, 2470–2474 (2006).

    Article  CAS  Google Scholar 

  10. Young, D.D. & Deiters, A. Photochemical activation of protein expression in bacterial cells. Angew. Chem. Int. Edn. Engl. 46, 4290–4292 (2007).

    Article  CAS  Google Scholar 

  11. Gossen, M., Bonin, A.L., Freundlieb, S. & Bujard, H. Inducible gene expression systems for higher eukaryotic cells. Curr. Opin. Biotechnol. 5, 516–520 (1994).

    Article  CAS  Google Scholar 

  12. Cambridge, S.B., Geissler, D., Keller, S. & Curten, B. A caged doxycycline analogue for photoactivated gene expression. Angew. Chem. Int. Edn. Engl. 45, 2229–2231 (2006).

    Article  CAS  Google Scholar 

  13. Sigler, A., Schubert, P., Hillen, W. & Niederweis, M. Permeation of tetracyclines through membranes of liposomes and Escherichia coli. Eur. J. Biochem. 267, 527–534 (2000).

    Article  CAS  Google Scholar 

  14. Lederer, T. et al. Tetracycline analogs affecting binding to Tn10-encoded Tet repressor trigger the same mechanism of induction. Biochemistry 35, 7439–7446 (1996).

    Article  CAS  Google Scholar 

  15. Valcavi, U., Brandt, A., Corsi, G.B., Minoja, F. & Pascucci, G. Chemical modifications in the tetracycline series. J. Antibiot. (Tokyo) 34, 34–39 (1981).

    Article  CAS  Google Scholar 

  16. Baron, U., Gossen, M. & Bujard, H. Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res. 25, 2723–2729 (1997).

    Article  CAS  Google Scholar 

  17. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  Google Scholar 

  18. Anastassiadis, K. et al. A predictable ligand regulated expression strategy for stably integrated transgenes in mammalian cells in culture. Gene 298, 159–172 (2002).

    Article  CAS  Google Scholar 

  19. Zhu, P. et al. Silencing and un-silencing of tetracycline-controlled genes in neurons. PLoS ONE 2, e533 (2007).

    Article  Google Scholar 

  20. Osumi, N. & Inoue, T. Gene transfer into cultured mammalian embryos by electroporation. Methods 24, 35–42 (2001).

    Article  CAS  Google Scholar 

  21. Calegari, F. & Huttner, W.B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci. 116, 4947–4955 (2003).

    Article  CAS  Google Scholar 

  22. Cockroft, D.L. Dissection and culture of postimplantation mouse embryos. In Postimplantation Mammalian Embryos. A Practical Approach. (eds., Rickwood, D.A.H. and Hames, B.D.) 15–40 (Oxford University press, Oxford, 1990).

    Google Scholar 

  23. Das, B. & Brown, D.D. Controlling transgene expression to study Xenopus laevis metamorphosis. Proc. Natl. Acad. Sci. USA 101, 4839–4842 (2004).

    Article  CAS  Google Scholar 

  24. Krestel, H.E., Mayford, M., Seeburg, P.H. & Sprengel, R. A GFP-equipped bidirectional expression module well suited for monitoring tetracycline-regulated gene expression in mouse. Nucleic Acids Res. 29, E39 (2001).

    Article  CAS  Google Scholar 

  25. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).

    Article  CAS  Google Scholar 

  26. Shevtsova, Z., Malik, J.M., Michel, U., Bahr, M. & Kugler, S. Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp. Physiol. 90, 53–59 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Mansuy and O. Griesbeck for critically reading the manuscript, D. Brown and members of his laboratory for help with the photoactivation of the Xenopus tadpoles, V. Staiger for conducting the electrophysiological measurements, C. Huber and F. Voss for technical assistance, and P. Schmieder and M. Beerbaum for recording the NMR spectra. This work was supported by the Max Planck Society. Additional support came from the Ford Foundation, the Minorities in Neuroscience Fellowship Program and a grant of the Volkswagen-Stiftung to S.B.C., F.C. and W.B.H were supported by the Federal Ministry of Education and Research (BMBF) in the framework of the National Genome Research Network, Systematic Methodological Platform RNAi, Förderkennzeichen 5 (NGFN-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney B Cambridge.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–2, Supplementary Notes 1–2 (PDF 506 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cambridge, S., Geissler, D., Calegari, F. et al. Doxycycline-dependent photoactivated gene expression in eukaryotic systems. Nat Methods 6, 527–531 (2009). https://doi.org/10.1038/nmeth.1340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing