Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Protein interaction platforms: visualization of interacting proteins in yeast

Abstract

Here we describe the protein interaction platform assay, a method for identifying interacting proteins in Saccharomyces cerevisiae. This assay relies on the reovirus scaffolding protein μNS, which forms large focal inclusions in living cells. When a query protein is fused to μNS and potential interaction partners are fused to a fluorescent reporter, interactors can be identified by screening for yeast that display fluorescent foci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of PIP assay in yeast.
Figure 2: Detection of previously characterized chaperone-effector interactions via PIP.
Figure 3: S. flexneri effector-chaperone interactions by PIP.

Similar content being viewed by others

References

  1. Fields, S. & Song, O. Nature 340, 245–246 (1989).

    Article  CAS  Google Scholar 

  2. Remy, I. & Michnick, S.W. Proc. Natl. Acad. Sci. USA 96, 5394–5399 (1999).

    Article  CAS  Google Scholar 

  3. Miller, C.L. et al. Mol. Cell. Proteomics 6, 1027–1038 (2007).

    Article  CAS  Google Scholar 

  4. Nguyen, C.L., Eichwald, C., Nibert, M.L. & Munger, K. J. Virol. 81, 13533–13543 (2007).

    Article  CAS  Google Scholar 

  5. Broering, T.J. et al. J. Virol. 79, 6194–6206 (2005).

    Article  CAS  Google Scholar 

  6. Ménard, R., Sansonetti, P., Parsot, C. & Vasselon, T. Cell 79, 515–525 (1994).

    Article  Google Scholar 

  7. Ogawa, M., Suzuki, T., Tatsuno, I., Abe, H. & Sasakawa, C. Mol. Microbiol. 48, 913–931 (2003).

    Article  CAS  Google Scholar 

  8. Niebuhr, K. et al. Mol. Microbiol. 38, 8–19 (2000).

    Article  CAS  Google Scholar 

  9. Hachani, A. et al. Microbes Infect. 10, 260–268 (2008).

    Article  CAS  Google Scholar 

  10. Page, A.L., Sansonetti, P. & Parsot, C. Mol. Microbiol. 43, 1533–1542 (2002).

    Article  CAS  Google Scholar 

  11. Parsot, C. et al. Mol. Microbiol. 56, 1627–1635 (2005).

    Article  CAS  Google Scholar 

  12. Page, A.L., Fromont-Racine, M., Sansonetti, P., Legrain, P. & Parsot, C. Mol. Microbiol. 42, 1133–1145 (2001).

    Article  CAS  Google Scholar 

  13. Slagowski, N.L., Kramer, R.W., Morrison, M.F., LaBaer, J. & Lesser, C.F. PLoS Pathog. 4, e9 (2008).

    Article  Google Scholar 

  14. Alto, N.M. et al. Cell 124, 133–145 (2006).

    Article  CAS  Google Scholar 

  15. Darwin, K.H., Robinson, L.S. & Miller, V.L. J. Bacteriol. 183, 1452–1454 (2001).

    Article  CAS  Google Scholar 

  16. Ehrbar, K., Friebel, A., Miller, S.I. & Hardt, W.D. J. Bacteriol. 185, 6950–6967 (2003).

    Article  CAS  Google Scholar 

  17. Huh, W.K. et al. Nature 425, 686–691 (2003).

    Article  CAS  Google Scholar 

  18. Marsischky, G. & LaBaer, J. Genome Res. 14, 2020–2028 (2004).

    Article  CAS  Google Scholar 

  19. Alberti, S., Gitler, A.D. & Lindquist, S. Yeast 24, 913–919 (2007).

    Article  CAS  Google Scholar 

  20. Walhout, A.J. & Vidal, M. Methods 24, 297–306 (2001).

    Article  CAS  Google Scholar 

  21. Weiss, D.S. et al. J. Bacteriol. 181, 508–520 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goehring, N.W., Gonzalez, M.D. & Beckwith, J. Mol. Microbiol. 61, 33–45 (2006).

    Article  CAS  Google Scholar 

  23. Uetz, P. et al. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  24. Datsenko, K.A. & Wanner, B.L. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Alberti and S. Lindquist (Whitehead Institute, Massachusetts Institute of Technology) for providing the pAG destination clones; A. Gray, K. Fixen and M. Goldberg (Massachusetts General Hospital, Harvard Medical School) for providing plasmids pNG162 and pDSW206 and antibodies to IcsA and isocitrate dehydrogenase; J. Heindl (Massachusetts General Hospital, Harvard Medical School) for providing the IpgB2 W62A construct; T. Hao, D. Hill and M. Vidal (Dana Farber Cancer Institute, Harvard Medical School) for assistance in designing primers to create the S. flexneri Gateway entry clones and for providing the Gateway-compatible Y2H vectors; and R. Levy and C. Koser (Massachusetts General Hospital, Harvard Medical School) for cloning and expressing S. typhimurium effectors in yeast. We also thank the US National Institute of Allergy and Infectious Diseases and the J. Craig Venter Institute for supplying the S. typhimurium Gateway entry clones. Partial support for this work was provided by US National Institutes of Health grants R56 AI067445 to M.L.N. and R01 AI064285 to C.F.L., and by a Charles E. Culpeper Medical Scholarship from the Rockefeller Brothers Fund and Goldman Philanthropic Partnerships to C.F.L.

Author information

Authors and Affiliations

Authors

Contributions

A.M.S., M.F.M. and A.O.A. performed and analyzed the experiments. A.M.S., M.L.N. and C.F.L. designed the experiments. M.L.N. and C.F.L. wrote the manuscript.

Corresponding author

Correspondence to Cammie F Lesser.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 7447 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, A., Morrison, M., Agunwamba, A. et al. Protein interaction platforms: visualization of interacting proteins in yeast. Nat Methods 6, 500–502 (2009). https://doi.org/10.1038/nmeth.1337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing