Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Activity-based protein profiling for the functional annotation of enzymes

Abstract

Activity-based protein profiling (ABPP), the use of active site-directed chemical probes to monitor enzyme function in complex biological systems, is emerging as a powerful post-genomic technology. ABPP probes have been developed for several enzyme classes and have been used to inventory enzyme activities en masse for a range of (patho) physiological processes. By presenting specific examples, we show here that ABPP provides researchers with a distinctive set of chemical tools to embark on the assignment of functions to many of the uncharacterized enzymes that populate eukaryotic and prokaryotic proteomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Schematic of an MS experiment.
Figure 3: Examples of enzymes assigned to specific mechanistic classes by ABPP.
Figure 4: Substrate mimicry of an ABPP probe.
Figure 5: Inhibitor screening by competitive ABPP.
Figure 6: Multidimensional profiling strategy for the annotation of the cancer-related enzyme KIAA1363.

Similar content being viewed by others

References

  1. Galperin, M.Y. & Koonin, E.V. 'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Res. 32, 5452–5463 (2004).

    Article  CAS  Google Scholar 

  2. Whisstock, J.C. & Lesk, A.M. Prediction of protein function from protein sequence and structure. Q. Rev. Biophys. 36, 307–340 (2003).

    Article  CAS  Google Scholar 

  3. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  Google Scholar 

  4. Evans, M.J. & Cravatt, B.F. Mechanism-based profiling of enzyme families. Chem. Rev. 106, 3279–3301 (2006).

    Article  CAS  Google Scholar 

  5. Sadaghiani, A.M., Verhelst, S.H. & Bogyo, M. Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol. 11, 20–28 (2007).

    Article  CAS  Google Scholar 

  6. Kidd, D., Liu, Y. & Cravatt, B.F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).

    Article  CAS  Google Scholar 

  7. Patricelli, M.P., Giang, D.K., Stamp, L.M. & Burbaum, J.J. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 1, 1067–1071 (2001).

    Article  CAS  Google Scholar 

  8. Greenbaum, D., Medzihradszky, K.F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).

    Article  CAS  Google Scholar 

  9. Kato, D. et al. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1, 33–38 (2005).

    Article  CAS  Google Scholar 

  10. Li, Y.M. et al. Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694 (2000).

    Article  CAS  Google Scholar 

  11. Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M. & Cravatt, B.F. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci. USA 101, 10000–10005 (2004).

    Article  CAS  Google Scholar 

  12. Chan, E.W., Chattopadhaya, S., Panicker, R.C., Huang, X. & Yao, S.Q. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc. 126, 14435–14446 (2004).

    Article  CAS  Google Scholar 

  13. Sieber, S.A., Niessen, S., Hoover, H.S. & Cravatt, B.F. Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nat. Chem. Biol. 2, 274–281 (2006).

    Article  CAS  Google Scholar 

  14. Patricelli, M.P. et al. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46, 350–358 (2007).

    Article  CAS  Google Scholar 

  15. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    Article  CAS  Google Scholar 

  16. Hekmat, O., Kim, Y.W., Williams, S.J., He, S. & Withers, S.G. Active-site peptide “fingerprinting” of glycosidases in complex mixtures by mass spectrometry. Discovery of a novel retaining beta-1,4-glycanase in Cellulomonas fimi. J. Biol. Chem. 280, 35126–35135 (2005).

    Article  CAS  Google Scholar 

  17. Salisbury, C.M. & Cravatt, B.F. Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc. Natl. Acad. Sci. USA 104, 1171–1176 (2007).

    Article  CAS  Google Scholar 

  18. Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat. Biotechnol. 20, 805–809 (2002).

    Article  CAS  Google Scholar 

  19. Barglow, K.T. & Cravatt, B.F. Discovering disease-associated enzymes by proteome reactivity profiling. Chem. Biol. 11, 1523–1531 (2004).

    Article  CAS  Google Scholar 

  20. Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B.F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl. Acad. Sci. USA 99, 10335–10340 (2002).

    Article  CAS  Google Scholar 

  21. Adam, G.C., Burbaum, J., Kozarich, J.W., Patricelli, M.P. & Cravatt, B.F. Mapping enzyme active sites in complex proteomes. J. Am. Chem. Soc. 126, 1363–1368 (2004).

    Article  CAS  Google Scholar 

  22. Okerberg, E.S. et al. High-resolution functional proteomics by active-site peptide profiling. Proc. Natl. Acad. Sci. USA 102, 4996–5001 (2005).

    Article  CAS  Google Scholar 

  23. Speers, A.E. & Cravatt, B.F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc. 127, 10018–10019 (2005).

    Article  CAS  Google Scholar 

  24. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  Google Scholar 

  25. Leung, D., Hardouin, C., Boger, D.L. & Cravatt, B.F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat. Biotechnol. 21, 687–691 (2003).

    Article  CAS  Google Scholar 

  26. Tosatto, S.C. & Toppo, S. Large-scale prediction of protein structure and function from sequence. Curr. Pharm. Des. 12, 2067–2086 (2006).

    Article  CAS  Google Scholar 

  27. Wolfe, M.S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398, 513–517 (1999).

    Article  CAS  Google Scholar 

  28. Chui, D.H. et al. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat. Med. 5, 560–564 (1999).

    Article  CAS  Google Scholar 

  29. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002).

    Article  CAS  Google Scholar 

  30. Kattenhorn, L.M., Korbel, G.A., Kessler, B.M., Spooner, E. & Ploegh, H.L. A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. Mol. Cell 19, 547–557 (2005).

    Article  CAS  Google Scholar 

  31. Jessani, N. et al. Class assignment of sequence-unrelated members of enzyme superfamilies by activity-based protein profiling. Angew. Chem. Int. Ed. Engl. 44, 2400–2403 (2005).

    Article  CAS  Google Scholar 

  32. Butor, C., Higa, H.H. & Varki, A. Structural, immunological, and biosynthetic studies of a sialic acid-specific O-acetylesterase from rat liver. J. Biol. Chem. 268, 10207–10213 (1993).

    CAS  PubMed  Google Scholar 

  33. Nazif, T. & Bogyo, M. Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors. Proc. Natl. Acad. Sci. USA 98, 2967–2972 (2001).

    Article  CAS  Google Scholar 

  34. Bogyo, M., Shin, S., McMaster, J.S. & Ploegh, H.L. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem. Biol. 5, 307–320 (1998).

    Article  CAS  Google Scholar 

  35. Greenbaum, D.C. et al. Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. Chem. Biol. 9, 1085–1094 (2002).

    Article  CAS  Google Scholar 

  36. Berger, A.B. et al. Identification of early intermediates of caspase activation using selective inhibitors and activity-based probes. Mol. Cell 23, 509–521 (2006).

    Article  CAS  Google Scholar 

  37. Barglow, K.T. & Cravatt, B.F. Substrate mimicry in an activity-based probe that targets the nitrilase family of enzymes. Angew. Chem. Int. Ed. Engl. 45, 7408–7411 (2006).

    Article  CAS  Google Scholar 

  38. van Kuilenburg, A.B. et al. beta-Ureidopropionase deficiency: an inborn error of pyrimidine degradation associated with neurological abnormalities. Hum. Mol. Genet. 13, 2793–2801 (2004).

    Article  CAS  Google Scholar 

  39. Li, W., Blankman, J.L. & Cravatt, B.F. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. J. Am. Chem. Soc. 129, 9594–9595 (2007).

    Article  CAS  Google Scholar 

  40. Chiang, K.P., Niessen, S., Saghatelian, A. & Cravatt, B.F. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. Chem. Biol. 13, 1041–1050 (2006).

    Article  CAS  Google Scholar 

  41. Saghatelian, A. et al. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43, 14332–14339 (2004).

    Article  CAS  Google Scholar 

  42. Wu, Y., Wang, X., Liu, X. & Wang, Y. Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res. 13, 601–616 (2003).

    Article  CAS  Google Scholar 

  43. Greenbaum, D.C. et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298, 2002–2006 (2002).

    Article  CAS  Google Scholar 

  44. Eksi, S., Czesny, B., Greenbaum, D.C., Bogyo, M. & Williamson, K.C. Targeted disruption of Plasmodium falciparum cysteine protease, falcipain 1, reduces oocyst production, not erythrocytic stage growth. Mol. Microbiol. 53, 243–250 (2004).

    Article  CAS  Google Scholar 

  45. Sijwali, P.S. et al. Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites. Proc. Natl. Acad. Sci. USA 101, 8721–8726 (2004).

    Article  CAS  Google Scholar 

  46. Sieber, S.A., Mondala, T.S., Head, S.R. & Cravatt, B.F. Microarray platform for profiling enzyme activities in complex proteomes. J. Am. Chem. Soc. 126, 15640–15641 (2004).

    Article  CAS  Google Scholar 

  47. Speers, A.E., Adam, G.C. & Cravatt, B.F. Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    Article  CAS  Google Scholar 

  48. Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nat. Methods 2, 691–697 (2005).

    Article  CAS  Google Scholar 

  49. Fonovic, M., Verhelst, S.H., Sorum, M.T. & Bogyo, M. Proteomic evaluation of chemically cleavable activity based probes. Mol. Cell. Proteomics, published online 5 July 2007.

  50. Gartner, C.A., Elias, J.E., Bakalarski, C.E. & Gygi, S.P. Catch-and-release reagents for broadscale quantitative proteomics analyses. J. Proteome Res. 6, 1482–1491 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Cravatt lab for careful reading of this manuscript and gratefully acknowledge the support of the US National Institutes of Health (CA087660, CA118696), the Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute and the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barglow, K., Cravatt, B. Activity-based protein profiling for the functional annotation of enzymes. Nat Methods 4, 822–827 (2007). https://doi.org/10.1038/nmeth1092

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1092

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing