Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry

Abstract

We present a robust and general method for the identification and relative quantification of phosphorylation sites in complex protein mixtures. It is based on a new chemical derivatization strategy using a dendrimer as a soluble polymer support and tandem mass spectrometry (MS/MS). In a single step, phosphorylated peptides are covalently conjugated to a dendrimer in a reaction catalyzed by carbodiimide and imidazole. Modified phosphopeptides are released from the dendrimer via acid hydrolysis and analyzed by MS/MS. When coupled with an initial antiphosphotyrosine protein immunoprecipitation step and stable-isotope labeling, in a single experiment, we identified all known tyrosine phosphorylation sites within the immunoreceptor tyrosine-based activation motifs (ITAM) of the T-cell receptor (TCR) CD3 chains, and previously unknown phosphorylation sites on total 97 tyrosine phosphoproteins and their interacting partners in human T cells. The dynamic changes in phosphorylation were quantified in these proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation and tagging of phosphopeptides, and validation with β-casein digests.
Figure 2: Quantitation of phosphopeptides in standard protein mixtures.
Figure 3: Quantitative phosphopeptide analysis.
Figure 4: Abundance ratios of tyrosine phosphopeptides isolated from T cells treated with pervanadate over 10 min or 2 min.

Similar content being viewed by others

References

  1. Pawson, T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Jumaa, H., Hendriks, R.W. & Reth, M. B cell signaling and tumorigenesis. Annu. Rev. Immunol. 23, 415–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Kalume, D.E., Molina, H. & Pandey, A. Tackling the phosphoproteome: tools and strategies. Curr. Opin. Chem. Biol. 7, 64–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Loyet, K.M., Stults, J.T. & Arnott, D. Mass spectrometric contributions to the practice of phosphorylation site mapping through 2003: a literature review. Mol. Cell Proteomics 4, 235–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Zappacosta, F., Huddleston, M.J. & Annan, R.S. Comparative phosphorylation site mapping from gel-derived proteins using a multidimensional ES/MS-based approach. Methods Mol. Biol. 284, 91–110 (2004).

    CAS  PubMed  Google Scholar 

  6. Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 20, 261–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Blagoev, B., Ong, S.E., Kratchmarova, I. & Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22, 1139–1145 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Brill, L.M. et al. Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Anal. Chem. 76, 2763–2772 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, H., Hu, P., Quinn, D.F. & Wang, Y.K. Phosphotyrosine proteomic study of interferon signaling pathway using a combination of immunoprecipitation and immobilized metal affinity chromatography. Mol. Cell. Proteomics 4, 721–730 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Pandey, A. et al. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. USA 97, 179–184 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Riggs, L., Seeley, E.H. & Regnier, F.E. Quantification of phosphoproteins with global internal standard technology. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 817, 89–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Haydon, C.E. et al. Identification of novel phosphorylation sites on Xenopus laevis Aurora A and analysis of phosphopeptide enrichment by immobilized metal-affinity chromatography. Mol. Cell. Proteomics 2, 1055–1067 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Oda, Y., Nagasu, T. & Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Goodlett, D.R. et al. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun. Mass Spectrom. 15, 1214–1221 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Chu, B., Wahl, G.M. & Orgel, L.E. Derivatization of unprotected polynucleotides. Nucleic Acids Res. 11, 6513–6529 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Li, X., Zhang, H., Ranish, J.A. & Aebersold, R. Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 75, 6648–6657 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Weiss, A. T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73, 209–212 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Alarcon, B., Gil, D., Delgado, P. & Schamel, W.W. Initiation of TCR signaling: regulation within CD3 dimers. Immunol. Rev. 191, 38–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Marie-Cardine, A. & Schraven, B. Coupling the TCR to downstream signalling pathways: the role of cytoplasmic and transmembrane adaptor proteins. Cell. Signal. 11, 705–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Janda, K.D. & Han, H. Combinatorial chemistry: a liquid-phase approach. Methods Enzymol. 267, 234–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. van Heerbeek, R., Kamer, P.C., van Leeuwen, P.W. & Reek, J.N. Dendrimers as support for recoverable catalysts and reagents. Chem. Rev. 102, 3717–3756 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Bosman, A.W., Janssen, H.M. & Meijer, E.W. About dendrimers: structure, physical properties and applications. Chem. Rev. 99, 1665–1688 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, R.M. et al. Dendrimer-supported combinatorial chemistry. Proc. Natl. Acad. Sci. USA 93, 10012–10017 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Love, P.E. & Shores, E.W. ITAM multiplicity and thymocyte selection: how low can you go? Immunity 12, 591–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Kersh, E.N., Shaw, A.S. & Allen, P.M. Fidelity of T cell activation through multistep T-cell receptor zeta phosphorylation. Science 281, 572–575 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Ruzzene, M., Penzo, D. & Pinna, L.A. Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem. J. 364, 41–47 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wienands, J., Larbolette, O. & Reth, M. Evidence for a preformed transducer complex organized by the B cell antigen receptor. Proc. Natl. Acad. Sci. USA 93, 7865–7870 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baumann, G. et al. In vitro characterization of major ligands for Src homology 2 domains derived from protein tyrosine kinases, from the adaptor protein SHC and from GTPase-activating protein in Ramos B cells. Eur. J. Immunol. 24, 1799–1807 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Eng, J.K., McCormack, A.L. & Yate, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Lin, Y.H. et al. Regulation of cell migration and survival by focal adhesion targeting of Lasp-1. J. Cell Biol. 165, 421–432 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Butch, E.R. & Guan, K.L. Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2. J. Biol. Chem. 271, 4230–4235 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Salomon, A.R. et al. Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc. Natl. Acad. Sci. USA 100, 443–448 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kashige, N., Carpino, N. & Kobayashi, R. Tyrosine phosphorylation of p62dok by p210bcr-abl inhibits RasGAP activity. Proc. Natl. Acad. Sci. USA 97, 2093–2098 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Aos, I. et al. Tyrosine phosphorylation of the CD3-epsilon subunit of the T-cell antigen receptor mediates enhanced association with phosphatidylinositol 3-kinase in Jurkat T cells. J. Biol. Chem. 272, 25310–25318 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Teng, J.M. et al. Phosphorylation of each of the distal three tyrosines of the CD28 cytoplasmic tail is required for CD28-induced T cell IL-2 secretion. Tissue Antigens 48, 255–264 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. MacGillivray, M. et al. The protein tyrosine phosphatase SHP-2 regulates interleukin-1-induced ERK activation in fibroblasts. J. Biol. Chem. 278, 27190–27198 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Watts, J.D. et al. Identification by electrospray ionization mass spectrometry of the sites of tyrosine phosphorylation induced in activated Jurkat T cells on the protein tyrosine kinase ZAP-70. J. Biol. Chem. 269, 29520–29529 (1994).

    CAS  PubMed  Google Scholar 

  44. Pelosi, M. et al. Tyrosine 319 in the interdomain B of ZAP-70 is a binding site for the Src homology 2 domain of Lck. J. Biol. Chem. 274, 14229–14237 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Beausoleil, S.A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 101, 12130–12135 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kobayashi, T. et al. Regulation of cytosolic prostaglandin E synthase by phosphorylation. Biochem. J. 381, 59–69 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project has been funded in part with Federal funds from the National Heart, Lung and Blood Institute, National Institutes of Health, under contract No. N01-HV-28179. W.A.T. is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRG 1740-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruedi Aebersold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Phosphorylated peptides from immuno-purified Jurkat lysates. (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, W., Wollscheid, B., O'Brien, R. et al. Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat Methods 2, 591–598 (2005). https://doi.org/10.1038/nmeth776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing