Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new method for C-terminal sequence analysis in the proteomic era

Abstract

The overall study of post-translational modifications (PTMs) of proteins is gaining strong interest. Beside phosphorylation and glycosylation, truncations of the nascent polypeptide chain at the amino or carboxy terminus are by far the most common types of PTMs in proteins. In contrast to the analysis of phosphorylation and glycosylation sites, relatively little attention has been paid to the development of approaches for the systematic analysis of proteolytic processing events. Here we present a new mass spectrometry (MS)-based strategy that allows the identification of the C-terminal sequence of proteins. The method can be directly applied to proteins cleaved with cyanogen bromide (CNBr) and purified either by SDS-PAGE, by two-dimensional (2D) PAGE or in solution, and it therefore eliminates the need for specific isolation of the C-terminal peptide. Using Shewanella oneidensis as a model system, we have demonstrated that this approach can be used for C-terminal sequence analysis at a proteomic scale. We also applied the method to study the C-terminal proteolytic processing of procardosin A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the steps in the C-terminal sequencing method.
Figure 2: C-terminal sequence analysis of pigeon cytochrome c.
Figure 3: C-terminal sequence analysis of 2D PAGE–separated proteins from S. oneidensis MR-1.
Figure 4: Analysis of recombinant procardosin A.

Similar content being viewed by others

References

  1. Rappsilber, J. & Mann, M. What does it mean to identify a protein in proteomics? Trends Biochem. Sci. 27, 74–78 (2002).

    Article  CAS  Google Scholar 

  2. Mann, M. & Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).

    Article  CAS  Google Scholar 

  3. Knight, Z.A. et al. Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nat. Biotechnol. 21, 1047–1054 (2003).

    Article  CAS  Google Scholar 

  4. Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378 (2001).

    Article  CAS  Google Scholar 

  5. Dove, A. The bittersweet promise of glycobiology. Nat. Biotechnol. 19, 913–917 (2001).

    Article  CAS  Google Scholar 

  6. Bailey, J.M., Nikfarjam, F., Shenoy, N.R. & Shively, J.E. Automated carboxyl-terminal sequence analysis of peptides and proteins using diphenyl phosphoroisothiocyanatidate. Protein Sci. 1, 1622–1633 (1992).

    Article  CAS  Google Scholar 

  7. Boyd, V.L., Bozzini, M., Zon, G., Noble, R.L. & Mattaliano, R.J. Sequencing of peptides and proteins from the carboxy terminus. Anal. Biochem. 206, 344–352 (1992).

    Article  CAS  Google Scholar 

  8. Samyn, B., Hardeman, K., Van der Eycken, J. & Van Beeumen, J. Applicability of the alkylation chemistry for chemical C-terminal protein sequence analysis. Anal. Chem. 72, 1389–1399 (2000).

    Article  CAS  Google Scholar 

  9. Bailey, J.M. Chemical methods of protein sequence analysis. J. Chromat. A 705, 47–65 (1995).

    Article  CAS  Google Scholar 

  10. Hardeman, K., Samyn, B., Van der Eycken, J. & Van Beeumen, J. An improved chemical approach toward the C-terminal sequence analysis of proteins containing all natural amino acids. Protein Sci. 7, 1593–1602 (1998).

    Article  CAS  Google Scholar 

  11. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  Google Scholar 

  12. Meng, F. et al. Informatics and multiplexing of intact protein identification in bacteria and the archaea. Nat. Biotechnol. 19, 952–957 (2001).

    Article  CAS  Google Scholar 

  13. Meng, F. et al. Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. Anal. Chem. 74, 2923–2929 (2002).

    Article  CAS  Google Scholar 

  14. Suckau, D. & Resemann, A. Targeted characterization of the N- and C-termini of undigested proteins by mass spectrometry. Anal. Chem. 75, 5817–5824 (2003).

    Article  CAS  Google Scholar 

  15. Sechi, S. & Chait, B.T. A method to define the carboxyl terminal of proteins. Anal. Chem. 72, 3374–3378 (2000).

    Article  CAS  Google Scholar 

  16. Kosaka, T., Takazawa, T. & Nakamura, T. Identification and C-terminal characterization of proteins from two-dimensional polyacrylamide gels by a combination of isotopic labeling and nano-electrospray Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 72, 1179–1185 (2000).

    Article  CAS  Google Scholar 

  17. Zhou, X.W., Blackman, M.J., Howell, S.A. & Carruthers, V.B. Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol. Cell. Proteomics 3, 565–576 (2004).

    Article  CAS  Google Scholar 

  18. Chait, B.T., Wang, R., Beavis, R.C. & Kent, S.B.H. Protein ladder sequencing. Science 262, 89–92 (1993).

    Article  CAS  Google Scholar 

  19. Murphy, C.M. & Fenselau, C. Recognition of the carboxy-terminal peptide in cyanogen bromide digests of proteins. Anal. Chem. 67, 1644–1645 (1995).

    Article  CAS  Google Scholar 

  20. Patterson, D.H., Tarr, G.E., Regnier, F.E. & Martin, S.A. C-terminal ladder sequencing via matrix-assisted laser desorption mass spectrometry coupled with carboxypeptidase Y time dependent and concentration-dependent digestions. Anal. Chem. 67, 3971–3978 (1995).

    Article  CAS  Google Scholar 

  21. Glasauer, S., Langley, S. & Beveridge, T.J. Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science 295, 117–119 (2002).

    Article  CAS  Google Scholar 

  22. Vanrobaeys, F. et al. Proteomics of the dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1, using a matrix-assisted laser desorption/ionization-tandem-time of flight mass spectrometer. Proteomics 3, 2249–2257 (2003).

    Article  CAS  Google Scholar 

  23. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  24. Simões, I. & Faro, C. Structure and function of plant aspartic proteinases. Eur. J. Biochem. 271, 2067–2075 (2004).

    Article  Google Scholar 

  25. Ramalho-Santos, M. et al. Identification and proteolytic processing of procardosin A. Eur. J. Biochem. 255, 133–138 (1998).

    Article  CAS  Google Scholar 

  26. Oda, Y., Nagasu, T. & Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the proteome. Nat. Biotechnol. 19, 379–382 (2001).

    Article  CAS  Google Scholar 

  27. Jones, J.J. et al. Investigation of MALDI-TOF and FT-MS techniques for analysis of Escherichia coli whole cells. Anal. Chem. 75, 1340–1347 (2003).

    Article  CAS  Google Scholar 

  28. Washburn, M.P., Wolters, D. & Yates, J.R., III. Large-scale analysis of the yeast proteome by multdimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    Article  CAS  Google Scholar 

  29. Quadroni, M. & James, P. Proteomics and automation. Electrophoresis 20, 664–677 (1999).

    Article  CAS  Google Scholar 

  30. Mitchell, P. Microfluidics – downsizing large-scale biology. Nat. Biotechnol. 19, 717–721 (2001).

    Article  CAS  Google Scholar 

  31. Oleschuk, R.D. & Harrison, D.J. Analytical microdevices for mass spectrometry. Trends Anal. Chem. 19, 379–388 (2000).

    Article  CAS  Google Scholar 

  32. Astorga-Wells, J., Jörnvall, H. & Bergman, T. A microfluidic electrocapture device in sample preparation for protein analysis by MALDI mass spectrometry. Anal. Chem. 75, 5213–5219 (2003).

    Article  CAS  Google Scholar 

  33. Caputo, E., Moharram, R. & Martin, B.M. Methods for on-chip protein analysis. Anal. Biochem. 321, 116–124 (2003).

    Article  CAS  Google Scholar 

  34. Wilkins, M.R. et al. Protein identification with N- and C-terminal sequence tags in proteome projects. J. Mol. Biol. 278, 599–608 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.S. is a postdoctoral fellow of the Fund for Scientific Research-Flanders (F.W.O.-Vlaanderen, Belgium). K.S. is funded by a Ph.D. grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (I.W.T.-Vlaanderen). P.C. is the recipient of a Ph.D. grant of the Portuguese government (PRAXIS XXI Programme–Fundação para a Ciência e a Tecnologia). This work was supported by Research Grant G.0132.02 (F.W.O.-Vlaanderen, Belgium) to J.V.B. and by the PRAI programme of the Centro Region of Portugal (X-PROT project) (C.F.). The authors thank G. Debyser for preparing the figures, F. Vanrobaeys for statistical analysis and E. Lecocq for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bart Samyn or Jozef Van Beeumen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

2D-PAGE analysis of Shewanella oneidensis proteins. (PDF 2174 kb)

Supplementary Fig. 2

SDS-PAGE of the spiked Shewanella oneidensis protein extract. (PDF 1978 kb)

Supplementary Fig. 3

C-terminal sequence analysis of the Shewanella extract spiked with the intact procardosin protein. (PDF 477 kb)

Supplementary Table 1

C-terminal sequence analysis of standard proteins. (PDF 50 kb)

Supplementary Table 2

Proteins of Shewanella oneidensis identified by PMF-analysis of CNBr fragments without characterization of the C termini. (PDF 56 kb)

Supplementary Methods (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samyn, B., Sergeant, K., Castanheira, P. et al. A new method for C-terminal sequence analysis in the proteomic era. Nat Methods 2, 193–200 (2005). https://doi.org/10.1038/nmeth738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing