Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material

Abstract

In general, the relatively modest expansion experienced by most materials on heating is caused by increasing anharmonic vibrational amplitudes of the constituent atoms, ions or molecules1. This phenomenon is called positive thermal expansion (PTE) and usually occurs along all three crystallographic axes. In very rare cases, structural peculiarities may give rise either to anomalously large PTE, or to negative thermal expansion (NTE, when lattice dimensions shrink with heating)2,3,4. As NTE and unusually large PTE are extremely uncommon for molecular solids, mechanisms that might give rise to such phenomena are poorly understood. Here we show that the packing arrangement of a simple dumbbell-shaped organic molecule, coupled with its intermolecular interactions, facilitates a cooperative mechanical response of the three-dimensional framework to changes in temperature. A series of detailed structural determinations at 15-K intervals has allowed us to visualize the process at the molecular level. The underlying mechanism is reminiscent of a three-dimensional (3D) folding trellis and results in exceptionally large and reversible uniaxial PTE and biaxial NTE of the crystal. Understanding such mechanisms is highly desirable for the future design of sensitive thermomechanical actuators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structure and stacking.
Figure 2: A perspective view along [100] showing that the entire structure consists of a single 3D network of helical hydrogen-bonded chains.
Figure 3: Photomicrographs, recorded at 323 and 245 K, of the same crystal immersed in a temperature-controlled stream of dry nitrogen gas.
Figure 4: The effect of temperature on structural parameters.

Similar content being viewed by others

References

  1. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Holt, Rinehart & Winston, 1976).

    Google Scholar 

  2. Goodwin, A. L. et al. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science 319, 794–797 (2008).

    Article  CAS  Google Scholar 

  3. Barrera, G. D., Bruno, J. A. O., Barron, T. H. K. & Allan, N. L. Negative thermal expansion. J. Phys. Condens. Matter 17, R217–R252 (2005).

    Article  CAS  Google Scholar 

  4. Jasmine, L. K., Michael, J. K. & Daniel, B. L. Impact of metallophilicity on ‘colossal’ positive and negative thermal expansion in a series of isostructural dicyanometallate coordination polymers. J. Am. Chem. Soc. 131, 4866–4871 (2009).

    Article  Google Scholar 

  5. Khuong, T.-A. V., Nuez, J. E., Godinez, C. E. & Garcia-Garibay, M. A. Crystalline molecular machines: A quest toward solid-state dynamics and function. Acc. Chem. Res. 39, 413–422 (2006).

    Article  CAS  Google Scholar 

  6. Evans, J. S. O. Negative thermal expansion materials. J. Chem. Soc. Dalton. Trans. 3317–3326 (1999).

  7. Lightfoot, P., Woodcock, D. A., Maple, M. J., Villaescusa, L. A. & Wright, P. A. The widespread occurrence of negative thermal expansion in zeolites. J. Mater. Chem. 11, 212–216 (2001).

    Article  CAS  Google Scholar 

  8. Goodwin, A. L. & Kepert, C. J. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials. Phys. Rev. B 71, 140301–140304 (2005).

    Article  Google Scholar 

  9. Goodwin, A. L., Chapman, K. W. & Kepert, C. J. Guest-dependent negative thermal expansion in nanoporous Prussian blue analogues MIIPtIV(CN)6·x{H2O} (0≤x≤2; M=Zn, Cd). J. Am. Chem. Soc. 127, 17980–17981 (2005).

    Article  CAS  Google Scholar 

  10. Wu, Y. et al. Negative thermal expansion in the metal–organic framework material Cu3(1,3,5−benzenetricarboxylate)2 . Angew. Chem. Int. Ed. 47, 8929–8932 (2008).

    Article  CAS  Google Scholar 

  11. Zhou, W., Wu, H., Yildirim, T., Simpson, J. R. & Walker, A. R. H. Origin of the exceptional negative thermal expansion in metal–organic framework-5 Zn4O(1,4−benzenedicarboxylate)3 . Phys. Rev. B 78, 054114 (2008).

    Article  Google Scholar 

  12. White, G. K. & Choy, C. L. Thermal expansion and Grüneisen parameters of isotropic and oriented polyethylene. J. Polym. Sci. Polym. Phys. Ed. 22, 835–846 (1984).

    Article  CAS  Google Scholar 

  13. Birkedal, H., Schwarzenbach, D. & Pattison, P. Observation of uniaxial negative thermal expansion in an organic crystal. Angew. Chem. Int. Ed. 41, 754–756 (2002).

    Article  CAS  Google Scholar 

  14. Haas, S. et al. Large uniaxial negative thermal expansion in pentacene due to steric hindrance. Phys. Rev. B 76, 205203 (2007).

    Article  Google Scholar 

  15. Krishnan, R. S., Srinivasan, R. & Devanarayanan, S. Thermal Expansion of Crystals (Pergamon, 1979).

    Book  Google Scholar 

  16. Lloyd, G. O. et al. Solid-state self-inclusion: The missing link. Angew. Chem. Int. Ed. 45, 5354–5358 (2006).

    Article  CAS  Google Scholar 

  17. Yang, C., Wang, X. & Omary, M. A. Crystallographic observation of dynamic gas adsorption sites and thermal expansion in a breathable fluorous metal–organic framework. Angew. Chem. Int. Ed. 48, 2500–2505 (2009).

    Article  CAS  Google Scholar 

  18. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 3814–3816 (2007).

  19. Nelson, J. B. & Riley, D. P. The thermal expansion of graphite from 15 C to 800 C: Part I. Experimental. Proc. Phys. Soc. Lond. 57, 477–486 (1945).

    Article  CAS  Google Scholar 

  20. Arvanitidis, J., Papagelis, K., Margadonna, S., Prassides, K. & Fitch, A. N. Temperature-induced valence transition and associated lattice collapse in samarium fulleride. Nature 425, 599–602 (2003).

    Article  CAS  Google Scholar 

  21. Salvador, J. R., Guo, F., Hogan, T. & Kanatzidis, M. G. Zero thermal expansion in YbGaGe due to an electronic valence transition. Nature 425, 702–705 (2003).

    Article  CAS  Google Scholar 

  22. Xing, X., Deng, J., Chen, J. & Liu, G. Novel thermal expansion of lead titanate. Rare Metals 22, 294–297 (2003).

    CAS  Google Scholar 

  23. Schilfgaarde, M. v., Abrikosov, I. A. & Johansson, B. Origin of the invar effect in iron-nickel alloys. Nature 400, 46–49 (1999).

    Article  Google Scholar 

  24. Tasumi, M. & Simanouchi, T. Crystal vibrations and intermolecular forces of polymethylene crystals. J. Chem. Phys. 43, 1245–1258 (1965).

    Article  CAS  Google Scholar 

  25. Maddox, J. Crystal from first principles. Nature 335, 201 (1988).

    Article  Google Scholar 

  26. Dunitz, J. D. Are crystal structures predictable? Chem. Commun. 545–548 (2003).

Download references

Acknowledgements

We are grateful to A. Pietraszko of the Institute of Low Temperature and Structure Research of the Polish Academy of Sciences in Wrocław for the X-ray powder diffraction studies. We thank the National Research Foundation and Department of Science and Technology (SARCHI Program) for support of this work. Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre under reference numbers CCDC 723,906–723,913. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK).

Author information

Authors and Affiliations

Authors

Contributions

T.J. synthesized the compound and carried out the initial crystal-structure determinations and thermal analyses. D.D. carried out the variable-temperature studies and wrote the initial draft of the letter. L.J.B. wrote the final draft, prepared the figures and coordinated the project.

Corresponding author

Correspondence to Leonard J. Barbour.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2308 kb)

Supplementary Information

Supplementary Movie 1 (MOV 65 kb)

Supplementary Information

Supplementary Movie 2 (MOV 26 kb)

Supplementary Information

Supplementary Movie 3 (MOV 311 kb)

Supplementary Information

Supplementary Movie 4 (MOV 452 kb)

Supplementary Information

Supplementary Movie 5 (MOV 1214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, D., Jacobs, T. & Barbour, L. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nature Mater 9, 36–39 (2010). https://doi.org/10.1038/nmat2583

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2583

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing