Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Superconducting group-IV semiconductors

Abstract

Despite the amount of experimental and theoretical work on doping-induced superconductivity in covalent semiconductors based on group IV elements over the past four years, many open questions and puzzling results remain to be clarified. The nature of the coupling (whether mediated by electronic correlation, phonons or both), the relationship between the doping concentration and the critical temperature (Tc), which affects the prospects for higher transition temperatures, and the influence of disorder and dopant homogeneity are debated issues that will determine the future of the field. Here, we present recent achievements and predictions, with a focus on boron-doped diamond and silicon. We also suggest that innovative superconducting devices, combining specific properties of diamond or silicon with the maturity of semiconductor-based technologies, will soon be developed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

    CAS  Google Scholar 

  2. Crespi, V. H. Clathrates join the covalent club. Nature Mater. 2, 650–651 (2003).

    CAS  Google Scholar 

  3. Ekimov, E. A. et al. Superconductivity in diamond. Nature 428, 542–545 (2004).

    CAS  Google Scholar 

  4. Bustarret, E. et al. Superconductivity in doped cubic silicon. Nature 444, 465–468 (2006).

    CAS  Google Scholar 

  5. Ren, Z.-A. et al. Superconductivity in boron-doped SiC. J. Phys. Soc. Jap. 76, 103710 (2007).

    Google Scholar 

  6. Kriener, M. et al. Specifc heat and electronic states of superconducting boron-doped silicon carbide. Phys. Rev. B 78, 024517 (2008).

    Google Scholar 

  7. Kawaji, H., Horie, H.-O., Yamanaka, S. & Ishikawa, M. Superconductivity in the silicon clathrate compound (Na, Ba)xSi46 . Phys. Rev. Lett. 74, 1427–1429 (1995).

    CAS  Google Scholar 

  8. Tanigaki, K. et al. Mechanism of superconductivity in the polyhedral-network compound Ba8Si46. Nature Mater. 2, 653–655 (2003).

    CAS  Google Scholar 

  9. Hebard, A. F. et al. Superconductivity at 18 K in potassium-doped C60 . Nature 350, 600–601 (1991).

    CAS  Google Scholar 

  10. Varma, C. M., Zaanen, J. & Raghavachari, K. Superconductivity in the fullerenes. Science 254, 989–992 (1991).

    Article  CAS  Google Scholar 

  11. Weller, T. E., Ellerby, M., Saxena, S. S., Smith, R. P. & Skipper, N. T. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nature Phys. 1, 39–41 (2005).

    CAS  Google Scholar 

  12. Emery, N. et al. Superconductivity of bulk CaC6 . Phys. Rev. Lett. 95, 087003 (2005).

    CAS  Google Scholar 

  13. Carbotte, J. P. Properties of boson exchange superconductors. Rev. Mod. Phys. 62, 1027–1157 (1990).

    CAS  Google Scholar 

  14. Pickett, W. E. The next breakthrough in phonon-mediated superconductivity. Physica C 468, 126–135 (2008).

    CAS  Google Scholar 

  15. Moussa, J. E. & Cohen, M. L. Constraints on Tc for superconductivity in heavily boron-doped diamond. Phys. Rev. B 77, 064518 (2008).

    Google Scholar 

  16. Calandra, M. & Mauri, F. High-Tc superconductivity in superhard diamondlike BC5 . Phys. Rev. Lett. 101, 016401 (2008).

    Google Scholar 

  17. Cava, R. J. Super silicon. Nature 444, 427–428 (2006).

    CAS  Google Scholar 

  18. Cohen, M. L. Superconductivity in many-valley semiconductors and in semimetals. Phys. Rev. 134, A511–A521 (1964).

    Google Scholar 

  19. Cohen, M. L. The existence of a superconducting state in semiconductors. Rev. Mod. Phys. 36, 240–243 (1964).

    CAS  Google Scholar 

  20. Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting SrTiO3 . Phys. Rev. Lett. 12, 474–475 (1964).

    CAS  Google Scholar 

  21. Schooley, J. F. et al. Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3 . Phys. Rev. Lett. 14, 305–307 (1965).

    CAS  Google Scholar 

  22. Hein, R. A., Gibson, J. W., Mazelsky, R., Miller, R. C. & Hulm, J. K. Superconductivity in germanium telluride. Phys. Rev. Lett. 12, 320–322 (1964).

    CAS  Google Scholar 

  23. Gunnarsson, O. Superconductivity in fullerides. Rev. Mod. Phys. 69, 575–606 (1997).

    CAS  Google Scholar 

  24. Iwasa, T. & Takenobu, T. Superconductivity, Mott–Hubbard states, and molecular orbital order in intercalated fullerides. J. Phys. Cond. Mat. 15, R495–R519 (2003).

    CAS  Google Scholar 

  25. Kasper, J. S., Hagenmuller, P., Pouchard, M. & Cros, C. Clathrate structure of silicon Na8Si46 and NaxSi136 (x < 11). Science 150, 1713–1714 (1965).

    CAS  Google Scholar 

  26. Connétable, D. et al. Superconductivity in doped sp3 semiconductors: The case of the clathrates. Phys. Rev. Lett. 91, 247001 (2003).

    Google Scholar 

  27. Solozhenko, V. L., Dubrovinskaia, N. A. & Dubrovinsky, L. S. Synthesis of bulk superhard semiconducting B–C material. Appl. Phys. Lett. 85, 1508–1510 (2004).

    CAS  Google Scholar 

  28. Ekimov, E. A. et al. Diamond crystallization in the system B4C.-C. Inorg. Mater. 40, 932–936 (2004).

    CAS  Google Scholar 

  29. Dubitskiy, G. A. et al. Superhard superconducting materials based on diamond and cubic boron nitride. JETP Lett. 81, 260–263 (2005).

    CAS  Google Scholar 

  30. Dubrovinskaia, N. et al. Large carbon-isotope shift of Tc in boron-doped diamond. Appl. Phys. Lett. 92, 132506 (2008).

    Google Scholar 

  31. Takano, Y. et al. Superconductivity in diamond thin films well above liquid helium temperature. Appl. Phys. Lett. 85, 2851–2853 (2004).

    CAS  Google Scholar 

  32. Bustarret, E. et al. Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films. Phys. Rev. Lett. 93, 237005 (2004).

    CAS  Google Scholar 

  33. Kato, Y. et al. Dopant-site effect in superconducting diamond (111) studied by atomic stereophotography. Appl. Phys. Lett. 91, 251914 (2007).

    Google Scholar 

  34. Mukuda, H. et al. Microscopic evidence for evolution of superconductivity by effective carrier doping in boron-doped diamond: 11B-NMR study. Phys. Rev. B 75, 033301 (2007).

    Google Scholar 

  35. Nesladek, M. et al. Superconductive B-doped nanocrystalline diamond thin films: Electrical transport and Raman spectra. Appl. Phys. Lett. 88, 232111 (2006).

    Google Scholar 

  36. Ishizaka, K. et al. Observation of a superconducting gap in boron-doped diamond by laser-excited photoemission spectroscopy. Phys. Rev. Lett. 98, 047003 (2007).

    CAS  Google Scholar 

  37. Cammilleri, D. et al. Highly doped Si and Ge formed by GILD (gas immersion laser doping); from GILD to superconducting silicon. Thin Solid Films 517, 75–79 (2008).

    CAS  Google Scholar 

  38. Kortus, J. Where are the electrons? Nature Mater. 4, 879–880 (2005).

    CAS  Google Scholar 

  39. Baskaran, G. Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence. Sci. Technol. Adv. Mater. 7, S49–S53 (2006).

    CAS  Google Scholar 

  40. Capone, M., Fabrizio, M., Castellani, C. & Tosatti, E. Strongly correlated superconductivity. Science 296, 2364–2366 (2002).

    CAS  Google Scholar 

  41. Han, J. E., Gunnarsson, O. & Crespi, V. H. Strong superconductivity with local Jahn–Teller phonons in C60 solids. Phys. Rev. Lett. 90, 167006 (2003).

    CAS  Google Scholar 

  42. Boeri, L., Kortus, J. & Andersen, O. K. Three-dimensional MgB2-type superconductivity in hole-doped diamond. Phys. Rev. Lett. 93, 237002 (2004).

    Google Scholar 

  43. Lee, K. W. & Pickett, W. E. Superconductivity in boron-doped diamond. Phys. Rev. Lett. 93, 237003 (2004).

    Google Scholar 

  44. Ma, Y. et al. First-principles study of electron–phonon coupling in hole- and electron-doped diamonds in the virtual crystal approximation. Phys. Rev. B 72, 014306 (2005).

    Google Scholar 

  45. Blase, X., Adessi, Ch. & Connétable, D. Role of the dopant in the superconductivity of diamond. Phys. Rev. Lett. 93, 237004 (2004).

    CAS  Google Scholar 

  46. Xiang, H. J., Li, Z. Y., Yang, J. L., Hou, J. G. & Zhu, Q. S. Electron–phonon coupling in a boron-doped diamond superconductor. Phys. Rev. B 70, 212504 (2004).

    Google Scholar 

  47. Giustino, F., Yates, J. R., Souza, I., Cohen, M. L. & Louie, S. G. Electron–phonon interaction via electronic and lattice Wannier functions: Superconductivity in boron-doped diamond reexamined. Phys. Rev. Lett. 98, 047005 (2007).

    Google Scholar 

  48. Bourgeois, E. & Blase, X. Superconductivity in doped cubic silicon: An ab initio study. Appl. Phys. Lett. 90, 142511 (2007).

    Google Scholar 

  49. Margine, E. R. & Blase, X. Ab initio study of electron–phonon coupling in boron-doped SiC. Appl. Phys. Lett. 93, 192510 (2008).

    Google Scholar 

  50. Lee, K. W. & Pickett, W. E. Boron spectral density and disorder broadening in B-doped diamond. Phys. Rev. B 73, 075105 (2006).

    Google Scholar 

  51. Yokoya, T. et al. Origin of the metallic properties of heavily boron-doped superconducting diamond. Nature 438, 647–50 (2005).

    CAS  Google Scholar 

  52. Nakamura, J. et al. Holes in the valence band of superconducting boron-doped diamond film studied by soft X-ray absorption and emission spectroscopy. J. Phys. Soc. Jap. 77, 054711 (2008).

    Google Scholar 

  53. Migdal, A. B. Interactions between electrons and the lattice vibrations in a normal metal. Zh. Eksp. Teor. Fiz. 34, 1438–1446 (1958).

    CAS  Google Scholar 

  54. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957); Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    CAS  Google Scholar 

  55. Sacépé, B. et al. Tunneling spectroscopy and vortex imaging in boron-doped diamond. Phys. Rev. Lett. 96, 097006 (2006).

    Google Scholar 

  56. Ekimov, E. A. et al. Structure and superconductivity of isotope-enriched boron-doped diamond. Sci. Technol. Adv. Mater. 9, 044210 (2008).

    Google Scholar 

  57. Carbotte, J. P., Greeson, M. & Perez-Gonzalez, A. Modification of the isotope effect due to pair breaking. Phys. Rev. Lett. 66, 1789–1792 (1991).

    CAS  Google Scholar 

  58. Ishizaka, K. et al. Temperature-dependent localized excitations of doped carriers in superconducting diamond. Phys. Rev. Lett. 100, 166402 (2008).

    CAS  Google Scholar 

  59. Hoesch, M. et al. Phonon softening in superconducting diamond. Phys. Rev. B 75, 140508 (2007).

    Google Scholar 

  60. Ortolani, M. et al. Low-energy electrodynamics of superconducting diamond. Phys. Rev. Lett. 97, 097002 (2006).

    CAS  Google Scholar 

  61. Achatz, P. Metal-Insulator Transition and Superconductivity in Heavily Boron-Doped Diamond and Related Materials. PhD thesis, Univ. Joseph Fourier, Grenoble (2008).

    Google Scholar 

  62. Calandra, M., Vast, N. & Mauri, F. Superconductivity from doping boron icosahedra. Phys. Rev. B 69, 224505 (2004).

    Google Scholar 

  63. Solozhenko, V. L. et al. Ultimate metastable solubility of boron in diamond: Synthesis of superhard diamondlike BC5 . Phys. Rev. Lett. 102, 015506 (2009).

    Google Scholar 

  64. Zinin, P. V. et al. Pressure- and temperature-induced phase transition in the B-C system. J. Appl. Phys. 100, 013516 (2006).

    Google Scholar 

  65. Goss, J. P. & Briddon, P. R. Theory of boron aggregates in diamond: First-principles calculations. Phys. Rev. B 73, 085204 (2006).

    Google Scholar 

  66. Bourgeois, E., Bustarret, E., Achatz, P., Omnès, F. & Blase, X. Impurity dimers in superconducting B-doped diamond: Experiment and first-principles calculations. Phys. Rev. B 74, 094509 (2006).

    Google Scholar 

  67. Dubrovinskaia, N. et al. An insight into what superconducts in polycrystalline boron-doped diamonds based on investigations of microstructure. Proc. Natl Acad. Sci. USA 105, 11619–11622 (2008).

    CAS  Google Scholar 

  68. Schluter, M., Lannoo, M., Needels, M. & Baraff, G. A. Electron–phonon coupling and superconductivity in alkali-intercalated C60 solid. Phys. Rev. Lett. 68, 526–529 (1992).

    CAS  Google Scholar 

  69. Côté, M., Grossman, J. C., Cohen, M. L. & Louie, S. G. Electron–phonon interactions in solid C36 . Phys. Rev. Lett. 81, 697–700 (1998).

    Google Scholar 

  70. Breda, N. et al. C28: A possible room temperature organic superconductor. Phys. Rev. B 62, 130–133 (2000).

    CAS  Google Scholar 

  71. Benedict, L. X., Crespi, V. H., Louie, S. G. & Cohen, M. L. Static conductivity and superconductivity of carbon nanotubes: Relations between tubes and sheets. Phys. Rev. B 52, 14935–14940 (1995).

    CAS  Google Scholar 

  72. Kociak, M. et al. Superconductivity in ropes of single-walled carbon nanotubes. Phys. Rev. Lett. 86, 2416–2419 (2001).

    CAS  Google Scholar 

  73. Tang, Z. K. et al. Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292, 2462–2465 (2001).

    CAS  Google Scholar 

  74. Nunez-Regueiro, M., Marques, L., Hodeau, J. L., Bethoux, O. & Perroux, M. Polymerized fullerite structures. Phys. Rev. Lett. 74, 278–281 (1995).

    CAS  Google Scholar 

  75. Blank, V. et al. V. Ultrahard and superhard phases of fullerite C-60: Comparison with diamond on hardness and wear. Diam. Related Mater. 7, 427–431 (1998).

    CAS  Google Scholar 

  76. Blase, X., Gillet, P., San Miguel, A. & Mélinon, P. Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92, 215505 (2004).

    CAS  Google Scholar 

  77. Devos, A. & Lannoo, M. Electron–phonon coupling for aromatic molecular crystals: Possible consequences for their superconductivity. Phys. Rev. B 58, 8236–8239 (1998).

    CAS  Google Scholar 

  78. Park, C.-H., Giustino, F., Cohen, M. L. & Louie, S. G. Velocity renormalization and carrier lifetime in graphene from the electron–phonon interaction. Phys. Rev. Lett. 99, 086804 (2007).

    Google Scholar 

  79. Calandra, M. & Mauri, F. Electron–phonon coupling and electron self-energy in electron-doped graphene: Calculation of angular resolved photoemission spectra. Phys. Rev. B 76, 205411 (2007).

    Google Scholar 

  80. Mélinon, P., Kéghélian, P., Blase, X., Le Brusc, J. & Perez, A. Electronic signature of the pentagonal rings in silicon clathrate phases: Comparison with cluster-assembled films. Phys. Rev. B 58, 12590–12593 (1998).

    Google Scholar 

  81. Zipoli, F., Bernasconi, M. & Benedek, G. Electron–phonon coupling in halogen-doped carbon clathrates from first principles. Phys. Rev. B 74, 205408 (2006).

    Google Scholar 

  82. Comeau, M., Leleyter, M., Leclercq, J. & Pascoli, G. Electronic structures and stabilities of MpCn microclusters. II. BpCn (n < 6, p = 1, 3). AIP Conf. Proc. 312, 605–611 (1994).

    CAS  Google Scholar 

  83. Hach, C. T., Jones, L. E., Crossland, C. & Thrower, P. A. An investigation of vapour deposited boron-rich carbon: A novel graphite-like material. Part I. The structure of BCx/C6B thin films. Carbon 37, 221–230 (1999).

    CAS  Google Scholar 

  84. Liu, A. Y. & Mazin, I. I. Combining the advantages of superconducting MgB2 and CaC6 in one material: Suggestions from first-principles calculations. Phys. Rev. B 75, 064510 (2007).

    Google Scholar 

  85. Calandra, M., Kolmogorov, A. N. & Curtarolo, S. Search for high Tc in layered structures: The case of LiB. Phys. Rev. B 75, 144506 (2007).

    Google Scholar 

  86. Ribeiro, F. J. & Cohen, M. L. Possible superconductivity in hole-doped BC3 . Phys. Rev. B 69, 212507 (2004).

    Google Scholar 

  87. Rosner, H., Kitaigorodsky, A. & Pickett, W. E. Prediction of high Tc superconductivity in hole-doped LiBC. Phys. Rev. Lett. 88, 127001 (2002).

    CAS  Google Scholar 

  88. Moussa, J. E., Noffsinger, J. & Cohen, M. L. Possible thermodynamic stability and superconductivity of antifluorite Be2BxC1-x . Phys. Rev. B 78, 104506 (2008).

    Google Scholar 

  89. Schäpers, T. Superconductor/Semiconductor Junctions (Springer, 2001).

    Google Scholar 

  90. Doh, Y.-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).

    CAS  Google Scholar 

  91. Takayanagi, H. & Kawakami, T. Superconducting proximity effect in the native inversion layer on InAs. Phys. Rev. Lett. 54, 2449–2452 (1985).

    CAS  Google Scholar 

  92. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Google Scholar 

  93. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    CAS  Google Scholar 

  94. Gaidarzhy, A., Imboden, M., Mohanty, P., Rankin, J. & Sheldon, B. W. High quality factor gigahertz frequencies in nanomechanical diamond resonators. Appl. Phys. Lett. 91, 203503 (2007).

    Google Scholar 

  95. Lüders, M. et al. Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals. Phys Rev. B 72, 024545 (2005).

    Google Scholar 

  96. Marques, M. A. L. et al. Ab initio theory of superconductivity. II. Application to elemental metals. Phys. Rev. B 72, 024546 (2005).

    Google Scholar 

  97. Shirakawa, T., Horiuchi, S., Ohta, Y. & H. Fukuyama, H. Theoretical study on superconductivity in boron-doped diamond. J. Phys. Soc. Jap. 76, 014711 (2007).

    Google Scholar 

  98. Yanase, Y. & Yorozu, N. Localization and superconductivity in doped semiconductors. Preprint at <http://arxiv.org/abs/0810.2915> (2008).

  99. Klein, T. et al. Metal–insulator transition and superconductivity in boron-doped diamond. Phys. Rev. B 75, 165313 (2007).

    Google Scholar 

  100. Feigel'man, M. V., Ioffe, L. B., Kravtsov, V. E. & Yuzbashyan, E. A. Eigenfunction fractality and pseudogap state near the superconductor–insulator transition. Phys. Rev. Lett. 98, 027001 (2007).

    CAS  Google Scholar 

  101. Achatz, P. et al. Doping-induced metal–insulator transition in aluminum-doped 4H silicon carbide. Appl. Phys. Lett. 92, 072103 (2008).

    Google Scholar 

  102. Mott, N. F. Metal–Insulator Transitions (Taylor & Francis, 1974).

    Google Scholar 

  103. Persson, C. & Ferreira da Silva, A. in Optoelectronic Devices: III-Nitrides (eds Razeghi, M. & Henini, M.) Ch. 17, 479–559 (Elsevier, 2004).

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by the French CNRS, CEA and National Agency for Research (ANR) under contracts ANR-05-BLAN-0282 and ANR-08-BLAN-0170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Blase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blase, X., Bustarret, E., Chapelier, C. et al. Superconducting group-IV semiconductors. Nature Mater 8, 375–382 (2009). https://doi.org/10.1038/nmat2425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2425

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing