Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anisotropic self-assembly of spherical polymer-grafted nanoparticles

Abstract

It is easy to understand the self-assembly of particles with anisotropic shapes or interactions (for example, cobalt nanoparticles or proteins) into highly extended structures. However, there is no experimentally established strategy for creating a range of anisotropic structures from common spherical nanoparticles. We demonstrate that spherical nanoparticles uniformly grafted with macromolecules (‘nanoparticle amphiphiles’) robustly self-assemble into a variety of anisotropic superstructures when they are dispersed in the corresponding homopolymer matrix. Theory and simulations suggest that this self-assembly reflects a balance between the energy gain when particle cores approach and the entropy of distorting the grafted polymers. The effectively directional nature of the particle interactions is thus a many-body emergent property. Our experiments demonstrate that this approach to nanoparticle self-assembly enables considerable control for the creation of polymer nanocomposites with enhanced mechanical properties. Grafted nanoparticles are thus versatile building blocks for creating tunable and functional particle superstructures with significant practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical predictions and comparison of theory to experiments.
Figure 2: Experimental study of particle self-assembly.
Figure 3: Shear-stress response to steady-shear application at 180 C at a shear rate of 0.1 s−1 for composites with matrix M=42 kg mol−1 (black) and 142 kg mol−1 (red) and of pure homopolymers.

Similar content being viewed by others

References

  1. Krishnamoorti, R. & Vaia, R. A. Polymer nanocomposites. J. Polym. Sci. Pol. Phys. 45, 3252–3256 (2007).

    Article  CAS  Google Scholar 

  2. Mackay, M. E. et al. General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006).

    Article  CAS  Google Scholar 

  3. Krishnamoorti, R. Strategies for dispersing nanoparticles in polymers. MRS Bull. 32, 341–347 (2007).

    Article  CAS  Google Scholar 

  4. Bansal, A. et al. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Mater. 4, 693–698 (2005).

    Article  CAS  Google Scholar 

  5. Green, D. L. & Mewis, J. Connecting the wetting and rheological behaviors of poly (dimethylsiloxane)-grafted silica spheres in poly(dimethylsiloxane) melts. Langmuir 22, 9546–9553 (2006).

    Article  CAS  Google Scholar 

  6. Bansal, A. et al. Controlling the thermomechanical properties of polymer nanocomposites by tailoring the polymer-particle interface. J. Polym. Sci. B 44, 2944–2950 (2006).

    Article  CAS  Google Scholar 

  7. Wu, C. K., Hultman, K. L., O’Brien, S. & Koberstein, J. T. Functional oligomers for the control and fixation of spatial organization in nanoparticle assemblies. J. Am. Chem. Soc. 130, 3516–3520 (2008).

    Article  CAS  Google Scholar 

  8. Harton, S. E. & Kumar, S. K. Mean-field theoretical analysis of brush-coated nanoparticle dispersion in polymer matrices. J. Polym. Sci. Pol. Phys. 46, 351–358 (2008).

    Article  CAS  Google Scholar 

  9. Belkin, M., Snezhko, A., Aranson, I. S. & Kwok, W. K. Driven magnetic particles on a fluid surface: Pattern assisted surface flows. Phys. Rev. Lett. 99 (2007).

  10. Seul, M. & Andelman, D. Domain shapes and patterns—the phenomenology of modulated phases. Science 267, 476–483 (1995).

    Article  CAS  Google Scholar 

  11. Tang, Z. Y., Zhang, Z. L., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    Article  CAS  Google Scholar 

  12. Van Workum, K. & Douglas, J. F. Symmetry, equivalence, and molecular self-assembly. Phys. Rev. E 73, 031502 (2006).

    Article  Google Scholar 

  13. Bedrov, D., Smith, G. D. & Li, L. W. Molecular dynamics simulation study of the role of evenly spaced poly(ethylene oxide) tethers on the aggregation of C60 fullerenes in water. Langmuir 21, 5251–5255 (2005).

    Article  CAS  Google Scholar 

  14. Shay, J. S., Raghavan, S. R. & Khan, S. A. Thermoreversible gelation in aqueous dispersions of colloidal particles bearing grafted poly(ethylene oxide) chains. J. Rheol. 45, 913–927 (2001).

    Article  CAS  Google Scholar 

  15. Fejer, S. N. & Wales, D. J. Helix self-assembly from anisotropic molecules. Phys. Rev. Lett. 99, 086106 (2007).

    Article  Google Scholar 

  16. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  17. Lee, J. Y., Balazs, A. C., Thompson, R. B. & Hill, R. M. Self-assembly of amphiphilic nanoparticle-coil ‘tadpole’ macromolecules. Macromolecules 37, 3536–3539 (2004).

    Article  CAS  Google Scholar 

  18. Sciortino, F., Bianchi, E., Douglas, J. F. & Tartaglia, P. Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation. J. Chem. Phys. 126, 194903 (2007).

    Article  Google Scholar 

  19. Rabani, E., Reichman, D. R., Geissler, P. L. & Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 426, 271–274 (2003).

    Article  CAS  Google Scholar 

  20. Gupta, S., Zhang, Q. L., Emrick, T., Balazs, A. C. & Russell, T. P. Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Mater. 5, 229–233 (2006).

    Article  Google Scholar 

  21. Kammler, H. K., Beaucage, G., Mueller, R. & Pratsinis, S. E. Structure of flame-made silica nanoparticles by ultra-small-angle X-ray scattering. Langmuir 20, 1915–1921 (2004).

    Article  CAS  Google Scholar 

  22. Oberdisse, J. Aggregation of colloidal nanoparticles in polymer matrices. Soft Matter 2, 29–36 (2006).

    Article  CAS  Google Scholar 

  23. Ogawa, K., Vogt, T., Ullmann, M., Johnson, S. & Friedlander, S. K. Elastic properties of nanoparticle chain aggregates of TiO2, Al2O3, and Fe2O3 generated by laser ablation. J. Appl. Phys. 87, 63–73 (2000).

    Article  CAS  Google Scholar 

  24. Pratsinis, S. E. Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24, 197–219 (1998).

    Article  CAS  Google Scholar 

  25. Sear, R. P., Chung, S. W., Markovich, G., Gelbart, W. M. & Heath, J. R. Spontaneous patterning of quantum dots at the air-water interface. Phys. Rev. E 59, R6255–R6258 (1999).

    Article  CAS  Google Scholar 

  26. Dinsmore, A. D., Prasad, V., Wong, I. Y. & Weitz, D. A. Microscopic structure and elasticity of weakly aggregated colloidal gels. Phys. Rev. Lett. 96, 185502 (2006).

    Article  CAS  Google Scholar 

  27. Sciortino, F., Mossa, S., Zaccarelli, E. & Tartaglia, P. Equilibrium cluster phases and low-density arrested disordered states: The role of short-range attraction and long-range repulsion. Phys. Rev. Lett. 93 (2004).

  28. Starr, F. W., Douglas, J. F. & Glotzer, S. C. Origin of particle clustering in a simulated polymer nanocomposite and its impact on rheology. J. Chem. Phys. 119, 1777–1788 (2003).

    Article  CAS  Google Scholar 

  29. Hooper, J. B., Bedrov, D. & Smith, G. D. Supramolecular self-organization in PEO-modified C60 fullerene/water solutions: Influence of polymer molecular weight and nanoparticle concentration. Langmuir 24, 4550–4557 (2008).

    Article  CAS  Google Scholar 

  30. Li, C., Han, J., Ryu, C. Y. & Benicewicz, B. C. A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules 39, 3175–3183 (2006).

    Article  CAS  Google Scholar 

  31. Bates, F. S. & Fredrickson, G. H. Block copolymers—Designer soft materials. Phys. Today 52, 32–38 (1999).

    Article  CAS  Google Scholar 

  32. Ilavsky, J., Allen, A. J., Long, G. G. & Jemian, P. R. Effective pinhole-collimated ultrasmall-angle x-ray scattering instrument for measuring anisotropic microstructures. Rev. Sci. Instrum. 73, 1660–1662 (2002).

    Article  CAS  Google Scholar 

  33. Beaucage, G. Approximations leading to a unified exponential power-law approach to small-angle scattering. J. Appl. Crystallogr. 28, 717–728 (1995).

    Article  CAS  Google Scholar 

  34. Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. II 72, 1525–1568 (1976).

    Article  CAS  Google Scholar 

  35. Nagarajan, R. & Ruckenstein, E. Theory of surfactant self-assembly—a predictive molecular thermodynamic approach. Langmuir 7, 2934–2969 (1991).

    Article  CAS  Google Scholar 

  36. Zana, R. & Talmon, Y. Dependence of aggregate morphology on structure of dimeric surfactants. Nature 362, 228–230 (1993).

    Article  CAS  Google Scholar 

  37. Goel, V. et al. Viscoelastic properties of silica-grafted poly(styrene-acrylonitrile) nanocomposites. J. Polym. Sci. Pol. Phys. 44, 2014–2023 (2006).

    Article  CAS  Google Scholar 

  38. Solomon, M. J., Almusallam, A. S., Seefeldt, K. F., Somwangthanaroj, A. & Varadan, P. Rheology of polypropylene/clay hybrid materials. Macromolecules 34, 1864–1872 (2001).

    Article  CAS  Google Scholar 

  39. Kashiwagi, T. et al. Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites. Polymer 48, 4855–4866 (2007).

    Article  CAS  Google Scholar 

  40. Kashiwagi, T. et al. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Mater. 4, 928–933 (2005).

    Article  CAS  Google Scholar 

  41. Kausch, H. H. & Michler, G. H. Effect of nanoparticle size and size-distribution on mechanical behavior of filled amorphous thermoplastic polymers. J. Appl. Polym. Sci. 105, 2577–2587 (2007).

    Article  CAS  Google Scholar 

  42. Ma, C. C. M., Chen, Y. J. & Kuan, H. C. Polystyrene nanocomposite materials: Preparation, morphology, and mechanical, electrical, and thermal properties. J. Appl. Polym. Sci. 98, 2266–2273 (2005).

    Article  CAS  Google Scholar 

  43. Putt, K., Krishnamoorti, R. & Green, P. F. The role of interfacial interactions in the dynamic mechanical response of functionalized SWNT-PS nanocomposites. Polymer 48, 3540–3545 (2007).

    Article  Google Scholar 

  44. Warrick, E. L. Rheology of filled siloxane polymers. Industrial Eng. Chem. 47, 1816–1820 (1955).

    Article  CAS  Google Scholar 

  45. Payne, A. R. Effect of dispersion on dynamic properties of filler-loaded rubbers. J. Appl. Polym. Sci. 9, 2273 (1965).

    Article  CAS  Google Scholar 

  46. Kluppel, M. Structure and properties of fractal filler networks in rubber. Kautsch. Gummi Kunstst. 50, 282–291 (1997).

    CAS  Google Scholar 

  47. Salaniwal, S., Kumar, S. K. & Douglas, J. F. Amorphous solidification in polymer-platelet nanocomposites. Phys. Rev. Lett. 89, 258301 (2002).

    Article  Google Scholar 

  48. Kumar, S. K. & Douglas, J. F. Gelation in physically associating polymer solutions. Phys. Rev. Lett. 87, 188301 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation (through the Division of Materials Research, DMR-0804647 (S.K.K.), a Nanoscale Science and Engineering Center, NSF Award Number DMR-0642573 (P.A., S.K.K., Y.L., B.C.B., L.S.S.) and a Materials Research Science and Engineering at Princeton (A.Z.P.)). D.A. is a member of the New York Structural Biology Center, which is a STAR Center supported by the New York State Office of Science, Technology, and Academic Research. Work benefited from the use of the Advanced Photon Source supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. V.G. and V.P. acknowledge partial support from the Welch Foundation, the US Army Research Office under Grant No. W911NF-07-1-0268 and funds made available through the CONTACT program from AFOSR. S.K.K. thanks M. Olvera (Northwestern), T. Russell (U Mass), R. Krishnamoorti (Houston) and S. Sen (Kolkota) for useful discussions and for critical comments on this paper.

Author information

Authors and Affiliations

Authors

Contributions

P.A. conducted most of the experiments in the research; S.K.K. planned the research and supervised it along with L.S.S. The paper was written by S.K.K. and J.F.D. Y.L. and B.C.B. made the functionalized particles. H.L., S.K.K., A.Z.P., V.G. and V.P. conducted the theoretical calculations reported. J.M. carried out the rheology experiments in collaboration with R.H.C. and S.K.K. D.A. helped with the TEM measurements, and J.I. and P.T. carried out the USAXS experiments and analysis.

Corresponding author

Correspondence to Sanat K. Kumar.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1622 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akcora, P., Liu, H., Kumar, S. et al. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nature Mater 8, 354–359 (2009). https://doi.org/10.1038/nmat2404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing