Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mesoporous germanium-rich chalcogenido frameworks with highly polarizable surfaces and relevance to gas separation

Abstract

Mesoporous materials with tunable non-oxidic framework compositions can exhibit new kinds of functionality including internal surfaces with high polarizability. As the chemical and physical characteristics of the framework components can induce useful catalytic, absorption and optoelectronic features, the mesoporous structure can promote fast mass diffusion kinetics and size-selective transport of guest molecules1. So far, synthetic efforts have resulted in mesoporous metal chalcogenides on using structure-directing moulds of soft or hard templates. These include ordered mesoporous II–VI semiconductors (such as CdS (refs 2,3), ZnS (ref. 4) and CdTe (ref. 5)). Recently, template-free synthetic routes for high-surface-area chalcogenide aerogels have been reported6,7. Here, we describe a novel kind of porous materials based on germanium-rich chalcogenide networks and ‘soft’ highly polarizable surfaces. We demonstrate that these materials can exhibit excellent selectivity for separating hydrogen from carbon dioxide and methane. These highly polarizable mesoporous structures have important implications for membrane-based gas separation process technologies including hydrogen purification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: XRD and optical absorption spectra of mesostructured and mesoporous NU–GeQ-N.
Figure 2: TEM images of mesoporous NU–GeQ-N.
Figure 3: Nitrogen adsorption–desorption isotherms of mesoporous NU–GeQ-1 and NU–GeQ-2 materials.
Figure 4: Adsorption isotherms, heat of adsorption and gas mixture separation curves of mesoporous NU–GeQ-N.

Similar content being viewed by others

References

  1. Antonietti, M. & Ozin, G. A. Promises and problems of mesoscale materials chemistry or why meso? Chem. Eur. J. 10, 28–41 (2004).

    Article  CAS  Google Scholar 

  2. Braun, P. V., Osenar, P. & Stupp, S. I. Semiconducting superlattices templated by molecular assemblies. Nature 380, 325–328 (1996).

    Article  CAS  Google Scholar 

  3. Gao, F., Lu, Q. & Zhao, D. Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique. Adv. Mater. 15, 739–742 (2003).

    Article  CAS  Google Scholar 

  4. Li, J., Kessler, H., Soulard, M., Khouchaf, L. & Tuiler, M.-H. Nanosized zinc sulfide obtained in the presence of cationic surfactants. Adv. Mater. 10, 946–949 (1998).

    Article  CAS  Google Scholar 

  5. Jiang, T. & Ozin, G. A. New directions in tin sulfide materials chemistry. J. Mater. Chem. 8, 1099–1108 (1998).

    Article  CAS  Google Scholar 

  6. Mohanan, J. L., Arachchige, I. U. & Brock, S. L. Porous semiconductor chalcogenide aerogels. Science 307, 397–400 (2005).

    CAS  Google Scholar 

  7. Bag, S., Trikalitis, P. N., Chupas, P. J., Armatas, G. S. & Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317, 490–493 (2007).

    Article  CAS  Google Scholar 

  8. MacLachlan, M. J., Coombs, N. & Ozin, G. A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4− clusters. Nature 397, 681–684 (1999).

    Article  CAS  Google Scholar 

  9. Trikalitis, P. N., Rangan, K. K., Bakas, T. & Kanatzidis, M. G. Varied pore organization in mesostructured semiconductors based on the [SnSe4]4− anion. Nature 410, 671–675 (2001).

    Article  CAS  Google Scholar 

  10. Rangan, K. K. et al. Hexagonal pore organization in mesostructured metal tin sulfides built with [Sn2S6]4− cluster. Nano Lett. 2, 513–517 (2002).

    Article  CAS  Google Scholar 

  11. Fröba, M. & Oberender, N. First synthesis of mesostructured thiogermanates. Chem. Commun. 1729–1730 (1997).

  12. Armatas, G. S. & Kanatzidis, M. G. Mesostructured germanium with cubic pore symmetry. Nature 441, 1122–1125 (2006).

    Article  CAS  Google Scholar 

  13. Armatas, G. S. & Kanatzidis, M. G. Hexagonal mesoporous germanium. Science 313, 817–820 (2006).

    Article  CAS  Google Scholar 

  14. Sun, D. et al. Hexagonal mesoporous germanium through surfactant-driven self-assembly of Zintl clusters. Nature 441, 1126–1130 (2006).

    Article  CAS  Google Scholar 

  15. Armatas, G. S. & Kanatzidis, M. G. Mesoporous compound semiconductors from metal-linked deltahedral Ge9 clusters. J. Am. Chem. Soc. 130, 11430–11436 (2008).

    Article  CAS  Google Scholar 

  16. Rouquerol, F., Rouquerol, J. & Sing, K. S. W. Adsorption by Powders and Porous Solids. Principles Methodology and Applications (Academic, 1999).

    Google Scholar 

  17. Foix, D., Gonbeau, D., Granier, D., Pradel, A. & Ribes, M. Electronic structure of thiogermanate and thioarseniate glasses: Experimental (XPS) and theoretical (ab initio) characterizations. Solid State Ion. 154-155, 161–173 (2002).

    Article  CAS  Google Scholar 

  18. Ueno, T. X-ray photoelectron and Anger electron spectroscopic studies of chemical shifts in amorphous Ge–Se system. Japan. J. Appl. Phys. 22, 1349–1352 (1983).

    Article  CAS  Google Scholar 

  19. Yashina, L. V., Kobeleva, S. P., Shatalova, T. B., Zlomanov, V. P. & Shtanov, V. I. XPS study of fresh and oxidized GeTe and (Ge,Sn)Te surface. Solid State Ion. 141/142, 513–522 (2001).

    Google Scholar 

  20. Oh, J. & Campbell, J. C. Thermal desorption of Ge native oxides and the loss of Ge from the surface. J. Electron. Mater. 33, 364–367 (2004).

    Article  CAS  Google Scholar 

  21. Yang, R. T. Adsorbents: Fundamentals and Applications Ch. 2 (Wiley, 2003).

    Book  Google Scholar 

  22. Garcia, L., French, R., Czernik, S. & Chornet, E. Catalytic steam reforming of bio-oils for the production of hydrogen: Effects of catalyst composition. Appl. Catal. A 201, 225–239 (2000).

    Article  CAS  Google Scholar 

  23. Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    Article  CAS  Google Scholar 

  24. Myers, A. L. & Prausnitz, J. M. Thermodynamics of mixed-gas adsorption. AIChEJ. 11, 121–127 (1965).

    Article  CAS  Google Scholar 

  25. Lin, H., Wagner, E. V., Freeman, B. D., Toy, L. G. & Gupta, R. P. Plasticization-enhanced hydrogen purification using polymeric membranes. Science 311, 639–642 (2006).

    Article  CAS  Google Scholar 

  26. Verweij, H., Lin, Y. S. & Dong, J. Microporous silica and zeolite membranes for hydrogen purification. MRS Bull. 31, 756–764 (2006).

    Article  CAS  Google Scholar 

  27. Ockwig, N. W. & Nenoff, T. M. Membranes for hydrogen separation. Chem. Rev. 107, 4078–4110 (2007).

    Article  CAS  Google Scholar 

  28. Verweij, H., Lin, Y. S. & Dong, J. Microporous silica and zeolite membranes for hydrogen purification. MRS Bull. 31, 756–764 (2006).

    Article  CAS  Google Scholar 

  29. Wang, K. & Stiefel, E. I. Toward separation and purification of olefins using dithiolene complexes: An electrochemical approach. Science 291, 106–109 (2001).

    Article  CAS  Google Scholar 

  30. Broxon, T. J. & Chung, R.P.-T. Micellar bound Meisenheimer complexes. J. Org. Chem. 55, 3886–3890 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

These studies were supported primarily by the Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF Award Number EEC-0647560. We thank Peter C. Stair for the use of a mass-spectrometer gas analyser. This work made use of the J.B. Cohen X-ray Diffraction facility and the Electron Probe Instrumentation Center (EPIC) and Keck Interdisciplinary Surface Science (Keck-II) facility of NUANCE Center at Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerasimos S. Armatas or Mercouri G. Kanatzidis.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1574 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armatas, G., Kanatzidis, M. Mesoporous germanium-rich chalcogenido frameworks with highly polarizable surfaces and relevance to gas separation. Nature Mater 8, 217–222 (2009). https://doi.org/10.1038/nmat2381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing