Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong magneto-chiral dichroism in enantiopure chiral ferromagnets

Abstract

As materials science is moving towards the synthesis, the study and the processing of new materials exhibiting well-defined and complex functions, the synthesis of new multifunctional materials is one of the important challenges. One of these complex physical properties is magneto-chiral dichroism which arises, at second order, from the coexistence of spatial asymmetry and magnetization in a material. Herein we report the first measurement of strong magneto-chiral dichroism in an enantiopure chiral ferromagnet. The ab initio synthesis of the enantiopure chiral ferromagnet is based on an enantioselective self-assembly, where a resolved chiral quaternary ammonium cation imposes the absolute configurations of the metal centres within chromium–manganese two-dimensional oxalate layers. The ferromagnetic interaction between Cr(III) and Mn(II) ions leads to a Curie temperature of 7 K. The magneto-chiral dichroic effect is enhanced by a factor of 17 when entering into the ferromagnetic phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Weakness of the chirality in the 2D oxalate-based chiral magnets.
Figure 3: Crystal structure of 1.
Figure 2: The counterion controls the configuration of the chromium centre.
Figure 4: Magnetic properties of the chiral magnet.
Figure 5: Inversion of the magneto-chiral dichroism with the enantiomer.
Figure 6: Enhancement of magneto-chiral dichroism at the Curie temperature of 1.

Similar content being viewed by others

References

  1. Kahn, O. Molecular Magnetism (VCH, New York, 1993).

    Google Scholar 

  2. Miller, J. S. & Drillon, M (eds) Magnetism: Molecules to Materials Vol. 1–5 (Wiley–VCH, Weinheim, 2001–2005).

  3. Manriquez, J. M., Yee, G. T., McLean, R. S., Epstein, A. J. & Miller, J. S. A room-temperature molecular-organic-based magnet. Science 252, 1415–1417 (1991).

    Article  CAS  Google Scholar 

  4. Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. A room-temperature organometallic magnet based on Prussian blue. Nature 378, 701–703 (1995).

    Article  CAS  Google Scholar 

  5. Holmes, S. M. & Girolami, G. S. Sol–gel synthesis of KVII[CrIII(CN)6]·2H2O: A crystalline molecule-based magnet with a magnetic ordering temperature above 100 C. J. Am. Chem. Soc. 121, 5593–5594 (1999).

    Article  CAS  Google Scholar 

  6. Gatteschi, D., Caneschi, A., Pardi, L. & Sessoli, R. Large clusters of metal-ions—the transition from molecular to bulk magnets. Science 265, 1054–1058 (1994).

    Article  CAS  Google Scholar 

  7. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    Article  CAS  Google Scholar 

  8. Thomas, L. et al. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996).

    Article  CAS  Google Scholar 

  9. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, New York, 2006).

    Book  Google Scholar 

  10. Gütlich, P. & Goodwin, H. A. (eds) Spin Crossover in Transition Metal Compounds Vol. 1–3 (Springer, Wien, 2004).

  11. Kurmoo, M. et al. Superconducting and semiconducting magnetic charge-transfer salts— (BEDT-TTF)4AFe(C2O4)3·C6H5CN (A=H2O, K, NH4). J. Am. Chem. Soc. 117, 12209–12217 (1995).

    Article  CAS  Google Scholar 

  12. Coronado, E., Galan-Mascaros, J. R., Gomez-Garcia, C. J. & Laukhin, V. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408, 447–449 (2000).

    Article  CAS  Google Scholar 

  13. Ohkoshi, S. et al. Coexistence of ferroelectricity and ferromagnetism in a rubidium manganese hexacyanoferrate. Angew. Chem. Int. Ed. 46, 3238–3241 (2007).

    Article  CAS  Google Scholar 

  14. Andres, R. et al. Rational design of three dimensional (3D) optically active molecule-based magnets: Synthesis, structure, optical and magnetic properties of {[Ru(bpy)3]2+,ClO4,[MnIICrIII(ox)3]}n and {[Ru(bpy)2(ppy)]+,[MIICrIII(ox)3]}n with MII=Mn, Ni; bpy=bipyridine, ppy=phenylpyridine, ox=C2O42−. X-ray Structure of {[ΔRu(bpy)3]2+,ClO4,[ΔMnIIΔCrIII(ox)3]}n and {[ΛRu(bpy)2(ppy)]+,[ΛMnIIΛCrIII(ox)3]}n . Inorg. Chem. 40, 4633–4640 (2001).

    Article  CAS  Google Scholar 

  15. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

    Article  CAS  Google Scholar 

  16. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  17. Baranova, N. B. & Zeldovich, B. Y. Theory of a new linear magneto-refractive effect in liquids. Mol. Phys. 38, 1085–1098 (1979).

    Article  CAS  Google Scholar 

  18. Barron, L. D. & Vrbancich, J. Magneto-chiral birefringence and dichroism. Mol. Phys. 51, 715–730 (1984).

    Article  CAS  Google Scholar 

  19. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  CAS  Google Scholar 

  20. Rikken, G. L. J. A. & Raupach, E. Pure and cascaded magnetochiral anisotropy in optical absorption. Phys. Rev. E 58, 5081–5084 (1998).

    Article  CAS  Google Scholar 

  21. Kleindienst, P. & Wagniere, G. H. Interferometric detection of magnetochiral birefringence. Chem. Phys. Lett. 288, 89–97 (1998).

    Article  CAS  Google Scholar 

  22. Vallet, M. et al. Observation of magnetochiral birefringence. Phys. Rev. Lett. 87, 183003 (2001).

    Article  Google Scholar 

  23. Sautenkov, V. A. et al. Electromagnetically induced magnetochiral anisotropy in a resonant medium. Phys. Rev. Lett. 94, 233601 (2005).

    Article  CAS  Google Scholar 

  24. Rikken, G. & Raupach, E. Enantioselective magnetochiral photochemistry. Nature 405, 932–935 (2000).

    Article  CAS  Google Scholar 

  25. Raupach, E., Rikken, G., Train, C. & Malezieux, B. Modelling of magneto-chiral enantioselective photochemistry. Chem. Phys. 261, 373–380 (2000).

    Article  CAS  Google Scholar 

  26. Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

    Article  CAS  Google Scholar 

  27. Krstic, V., Roth, S., Burghard, M., Kern, K. & Rikken, G. Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes. J. Chem. Phys. 117, 11315–11319 (2002).

    Article  CAS  Google Scholar 

  28. Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T. & Ramirez, A. P. Cupric oxide as an induced-multiferroic with high-Tc . Nature Mater. 7, 291–294 (2008).

    Article  CAS  Google Scholar 

  29. Coronado, E. et al. Design of chiral magnets: cyanide-bridged bimetallic assemblies based on cyclohexane-1,2-diamine. Polyhedron 22, 2435–2440 (2003).

    Article  CAS  Google Scholar 

  30. Inoue, K., Kikuchi, K., Ohba, M. & Okawa, H. Structure and magnetic properties of a chiral two-dimensional ferrimagnet with Tc of 38 K. Angew. Chem. Int. Ed. 42, 4810–4813 (2003).

    Article  CAS  Google Scholar 

  31. Gruselle, M., Train, C., Boubekeur, K., Gredin, P. & Ovanesyan, N. Enantioselective self-assembly of chiral bimetallic oxalate-based networks. Coord. Chem. Rev. 250, 2491–2500 (2006).

    Article  CAS  Google Scholar 

  32. Pilkington, M. & Decurtins, S. in Magnetism: Molecules to Materials II (eds Miller, J. S. & Drillon, M.) 339–356 (Wiley–VCH, Weinheim, 2001).

    Book  Google Scholar 

  33. Clement, R., Decurtins, S., Gruselle, M. & Train, C. Polyfunctional 2-(2D) and 3-(3D) dimensional oxalate bridged bimetallic magnets. Monatsh. Chem. 134, 117–135 (2003).

    Article  CAS  Google Scholar 

  34. Andres, R., Gruselle, M., Malezieux, B., Verdaguer, M. & Vaissermann, J. Enantioselective synthesis of optically active polymeric homo- and bimetallic oxalate-bridged networks [M2(ox)3]n . Inorg. Chem. 38, 4637–4646 (1999).

    Article  CAS  Google Scholar 

  35. Provent, C. & Williams, A. F. in Transition Metals in Supramolecular Chemistry (ed. Sauvage, J.-P.) 135–191 (Wiley, Chichester, 1999).

    Google Scholar 

  36. Alvarez, S., Alemany, P. & Avnir, D. Continuous chirality measures in transition metal chemistry. Chem. Soc. Rev. 34, 313–326 (2005).

    Article  CAS  Google Scholar 

  37. Carling, S. G. et al. Crystal structure and magnetic properties of the layer ferrimagnet N(n-C6H11)4MnIIFeIII(C2O4)3 . J. Chem. Soc. Dalton Trans. 1839–1843 (1996).

  38. Bénard, S. et al. Structure and NLO properties of layered bimetallic oxalato-bridged ferromagnetic networks containing stilbazolium-shaped chromophores. J. Am. Chem. Soc. 122, 9444–9454 (2000).

    Article  Google Scholar 

  39. Gruselle, M. et al. Enantioselective self-assembly of bimetallic [MnII(Δ)-CrIII(C2O4)3] and [MnII(Λ)-CrIII(C2O4)3] layered anionic networks templated by the optically active (Rp)- and (Sp)-[1-CH2N(n-C3H7)3-2-CH3-C5H3Fe-C5H5]+ cations. Chem. Eur. J. 10, 4763–4769 (2004).

    Article  CAS  Google Scholar 

  40. Gheorghe, R. et al. Enantiomerically pure quaternary ammonium salts with a chiral alkyl chain N(CH3)(n-C3H7)2(s-C4H9)I: Synthesis and physical studies. Chirality (2008, in the press).

  41. Gillard, R. D., Shepherd, D. J. & Tarr, D. A. Optically-active coordination-compounds.38. Circular-dichroism of labile trioxalatometallate(III) complexes. J. Chem. Soc. Dalton Trans. 594–599 (1976).

  42. Flack, H. D. & Bernardinelli, G. Reporting and evaluating absolute-structure and absolute-configuration determinations. J. Appl. Cryst. 33, 1143–1148 (2000).

    Article  CAS  Google Scholar 

  43. Atovmyan, L. O. et al. Structural, magnetic and Moessbauer studies of the molecular ferromagnet compounds NBu4[MCr(C2O4)3] (Bu=(CH2)3CH3, M=Mn,Fe). Synth. Metals 71, 1809–1810 (1995).

    Article  CAS  Google Scholar 

  44. Tamaki, H. et al. Design of metal-complex magnets. Syntheses and magnetic properties of mixed-metal assemblies {NBu4[MCr(C2O4)3]}x(NBu4+=tetra(n-butyl)ammonium ion; ox2−=oxalate ion; M=Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+). J. Am. Chem. Soc. 114, 6974–6979 (1992).

    Article  CAS  Google Scholar 

  45. Jung, J. H. et al. Optical magnetoelectric effect in the polar GaFeO3 ferrimagnet. Phys. Rev. Lett. 93, 037403 (2004).

    Article  CAS  Google Scholar 

  46. Sawada, K. & Nagaosa, N. Optical magnetoelectric effect in multiferroic materials: Evidence for a Lorentz force acting on a ray of light. Phys. Rev. Lett. 95, 237402 (2005).

    Article  Google Scholar 

  47. Bailar, J. C. & Jones, E. M. Synthesis of tris(oxalato)metalate(III) potassium and salts. Inorg. Synth. 1, 37–40 (1939).

    Google Scholar 

  48. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. An intensity evaluation method: EVAL-14. J. Appl. Crystallogr. 36, 220–229 (2003).

    Article  CAS  Google Scholar 

  49. Blessing, R. H. An empirical correction for absorption anisotropy. Acta Crystallogr. A 51, 33–38 (1995).

    Article  Google Scholar 

  50. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  51. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 32, 837–838 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UPMC, CNRS and Russian Academy of Sciences. The authors acknowledge financial support from Deutsche Forschungsgemeinschaft (RI 1027 for instrumentation and SPP 1137 for the grant of R.G.), CNRS/RAS Joint Research Program (project No. 16332) and the RFBR grant No. 05-03-33026. Discussions with K. Boubekeur about the crystallographic determination were particularly useful.

Author information

Authors and Affiliations

Authors

Contributions

C.T. proposed the appropriate chiral ammonium, undertook the magnetic measurements, took part in the MChD measurements and coordinated the whole work. R.G. carried out the synthesis and single-crystal growth. V.K. carried out the MChD measurements. L.M.C. recorded the crystallographic data and solved the structure. N.S.O. took part in the analysis of the magnetic and structural data. G.L.J.A.R. conceived and built the cryostat and the MChD measurement device and supervised the MChD measurements. M.G. was in charge of the synthetic part of the project from the beginning and supervised daily the synthetic work of R.G. M.V. launched the chiral magnets project and took part in the MChD measurements.

Corresponding authors

Correspondence to Cyrille Train or Michel Gruselle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Train, C., Gheorghe, R., Krstic, V. et al. Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. Nature Mater 7, 729–734 (2008). https://doi.org/10.1038/nmat2256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing