Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A sensitivity-enhanced field-effect chiral sensor

Abstract

Organic thin-film transistor sensors have been recently attracting the attention of the plastic electronics community for their potential exploitation in novel sensing platforms. Specificity and sensitivity are however still open issues: in this respect chiral discrimination—being a scientific and technological achievement in itself—is indeed one of the most challenging sensor bench-tests. So far, conducting-polymer solid-state chiral detection has been carried out at part-per-thousand concentration levels. Here, a novel chiral bilayer organic thin-film transistor gas sensor—comprising an outermost layer with built-in enantioselective properties—is demonstrated to show field-effect amplified sensitivity that enables differential detection of optical isomers in the tens-of-parts-per-million concentration range. The ad-hoc-designed organic semiconductor endowed with chiral side groups, the bilayer structure and the thin-film transistor transducer provide a significant step forward in the development of a high-performance and versatile sensing platform compatible with flexible organic electronic technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bilayer OTFT chiral sensor structure.
Figure 2: PTO–PTA-bilayer OTFT sensor response to (S)-(−)-β-citronellol vapours.
Figure 3: PTO achiral sensing transistor exposed to (S)-(−)-β-citronellol and (R)-(+)-β-citronellol.
Figure 4: Sensitivity enhancement with OTFT sensors exposed to citronellol enantiomers.
Figure 5: Calibration curves of the chiral bilayer OTFTs exposed to (S)-(−)-β-citronellol, (R)-(+)-β-citronellol and to the racemic mixture as well as to (R)-(−)- and (S)-(+)-carvone.
Figure 6: Thickness-independent PTO OTFT ΔI responses.

Similar content being viewed by others

References

  1. Torsi, L. & Dodabalapur, A. Organic thin-film transistors as plastic analytical sensors. Anal. Chem. 77, 380A–387A (2005).

    Article  CAS  Google Scholar 

  2. Crone, B. et al. Electronic sensing of vapors with organic transistors. Appl. Phys. Lett. 78, 2229–2231 (2001).

    Article  CAS  Google Scholar 

  3. Bernards, D. A. et al. Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 18, 116–120 (2008).

    Article  CAS  Google Scholar 

  4. Star, A., Gabriel, J.-C. P., Bradley, K. & Grüner, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3, 459–463 (2003).

    Article  CAS  Google Scholar 

  5. Torsi, L. Organic thin-film transistors as analytical and bioanalytical sensors. Topic issue. Anal. Bioanal. Chem. 384, 309 (2006).

    Article  CAS  Google Scholar 

  6. Mcculloch, I. Thin films: Rolling out organic electronics. Nature Mater. 4, 583–584 (2005).

    Article  CAS  Google Scholar 

  7. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  8. Jenekhe, S. A. The special issue on organic electronics. Chem. Mater. 16, 4381–4390 (2004).

    Article  CAS  Google Scholar 

  9. Janata, J. & Josowicz, M. Conducting polymers in electronic chemical sensors. Nature Mater. 2, 19 (2003).

    Article  CAS  Google Scholar 

  10. Torsi, L. et al. Side-chain role in chemically sensing conducting polymer field-effect transistors. J. Phys. Chem. B 107, 7589–7594 (2003).

    Article  CAS  Google Scholar 

  11. Huang, J., Miragliotta, J., Becknell, A. & Katz, H. E. Hydroxy-terminated organic semiconductor-based field-effect transistors for phosphonate vapor detection. J. Am. Chem. Soc. 129, 9366–9376 (2007).

    Article  CAS  Google Scholar 

  12. Lemaire, M., Delabouglise, D., Garreau, R., Guy, A. & Roncali, J. Enantioselective chiral poly(thiophenes). J. Chem. Soc. Chem. Commun. 658–661 (1988).

  13. Huang, J. et al. Enantioselective discrimination of D- and L-phenylalanine by chiral polyaniline thin films. Adv. Mater. 15, 1158–1161 (2003).

    Article  CAS  Google Scholar 

  14. Severin, E. J., Sanner, R. D., Doleman, B. J. & Lewis, N. S. Differential detection of enantiomeric gaseous analytes using carbon black–chiral polymer composite, chemically sensitive resistors. Anal. Chem. 70, 1440–1443 (1998).

    Article  CAS  Google Scholar 

  15. de Lacy Costello, B. P. J., Ratcliffe, N. M. & Sivanand, P. S. The synthesis of novel 3-substituted pyrrole monomers possessing chiral side groups: A study of their chemical polymerization and the assessment of their chiral discrimination properties. Synth. Met. 139, 43–55 (2003).

    Article  CAS  Google Scholar 

  16. Bodenhöfer, K. et al. Chiral discrimination using piezoelectric and optical gas sensors. Nature 387, 577–580 (1997).

    Article  Google Scholar 

  17. Bodenhöfer, K. et al. Chiral discrimination in the gas phase using different transducers: Thickness share mode resonators and reflectometric interference spectroscopy. Anal. Chem. 69, 3058–3068 (1997).

    Article  Google Scholar 

  18. Hagleitner, C. et al. Smart single-chip gas sensor microsystem. Nature 414, 293–296 (2001).

    Article  CAS  Google Scholar 

  19. Crone, B. et al. Organic oscillator and adaptive amplifier circuits for chemical vapor sensing. J. Appl. Phys. 91, 10140–10146 (2002).

    Article  CAS  Google Scholar 

  20. Wang, L., Fine, D. & Dodabalapur, A. Nanoscale chemical sensors based on organic thin-film transistors. Appl. Phys. Lett. 85, 6386–6388 (2004).

    Article  CAS  Google Scholar 

  21. Wang, L., Fine, D., Torsi, L. & Dodabalapur, A. Nanoscale organic and polymeric field-effect transistors as chemical sensors. Anal. Bioanal. Chem. 384, 310–321 (2006).

    Article  CAS  Google Scholar 

  22. Someya, T., Dodabalapur, A., Gelperin, A., Katz, H. E. & Bao, Z. Integration and response of organic electronics with aqueous microfluidics. Langmuir 18, 5299–5302 (2002).

    Article  CAS  Google Scholar 

  23. Babudri, F., Farinola, G. M. & Naso, F. Synthesis of conjugated oligomers and polymers: The organometallic way. J. Mater. Chem. 14, 11–34 (2004).

    Article  CAS  Google Scholar 

  24. Naso, F. et al. Thin film construction and characterization and gas-sensing performance of a tailored phenylene–thienylene copolymer. J. Am. Chem. Soc. 125, 9055–9061 (2003).

    Article  CAS  Google Scholar 

  25. Tanese, M. C. et al. Poly(alkoxyphenylene–thienylene) Langmuir–Schafer thin-films for advanced performance transistors. Chem. Mater. 18, 778–784 (2006).

    Article  CAS  Google Scholar 

  26. Torsi, L., Dodabalapur, A., Sabbatini, L. & Zambonin, P. G. Multi-parameter gas sensor based on organic thin-film transistors. Sensors Actuators B 67, 312–316 (2000).

    Article  CAS  Google Scholar 

  27. Tanese, M. C., Fine, D., Dodabalapur, A. & Torsi, L. Interface and gate bias dependent response of sensing organic thin-film transistors. Biosens. Bioelectron. 21, 782–788 (2005).

    Article  CAS  Google Scholar 

  28. Someya, T., Katz, H. E., Gelperin, A., Lovinger, A. J. & Dodabalapur, A. Vapour sensing with α-ω-dihexylquaterthiophene field-effect transistors: The role of grain boundaries. Appl. Phys. Lett. 81, 3079–3081 (2002).

    Article  CAS  Google Scholar 

  29. Tanese, M. C. et al. Nanostructural depth-profile and field-effect properties of poly(alkoxyphenylene–thienylene) Langmuir–Schäfer thin-films. Thin Solid Films 516, 3263–3269 (2008).

    Article  CAS  Google Scholar 

  30. Tanese, M. C. et al. Conjugated phenylene–ethynylene polymers bearing glucose substituents as promising active layers in enantioselective chemiresistors. Sensors Actuators B 100, 17–21 (2004).

    Article  CAS  Google Scholar 

  31. Babudri, F. et al. Synthesis and chiroptical characterization of an amino acid functionalized dialkoxypoly(p-phenyleneethynylene). Macromolecules 39, 5206–5212 (2006).

    Article  CAS  Google Scholar 

  32. Horowitz, G., Hajlaoui, M. E. & Hajlaoui, R. Temperature and gate dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 87, 4456 (2000).

    Article  CAS  Google Scholar 

  33. Torsi, L. et al. Correlation between oligothiophene thin film transistor morphology and vapour responses. J. Phys. Chem. B 106, 12563–12568 (2002).

    Article  CAS  Google Scholar 

  34. Tanese, M. C. et al. A poly(phenyleneethynylene) polymer bearing amino acid substituents as active layer in enantioselective solid-state sensors. Proc. SPIE 6192, 61921E (2006).

    Article  Google Scholar 

  35. Horowitz, G. & Haifaoui, M. E. Mobility in polycrystalline oligothiophene field-effect transistors dependent on gate bias. Adv. Mater. 12, 1046 (2000).

    Article  CAS  Google Scholar 

  36. Dodabalapur, A. et al. Sensitive four-terminal silicon/organic field-effect chemical vapor sensors. Part of Proc. SPIE 6659, 185 (2007).

    Google Scholar 

  37. Dodabalapur, A., Torsi, L. & Katz, H. E. Organic transistors: Two-dimensional transport and improved electrical characteristics. Science 268, 270–271 (1995).

    Article  CAS  Google Scholar 

  38. Kreis, P. & Mosandl, A. Chiral compounds of essential oils. Part XII. Authenticity control of rose oils, using enantioselective multidimensional gas chromatography. Flavour Fragrance J. 7, 199–203 (1992).

    Article  CAS  Google Scholar 

  39. <http://www.restek.com/restek/images/external/59889.pdf>.

  40. Zhang, J., Boyd, A., Tselev, A., Paranjape, M. & Barbara, P. Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors. Appl. Phys. Lett. 88, 123112 (2006).

    Article  Google Scholar 

  41. Someya, T., Small, J., Kim, P., Nuckolls, C. & Yardley, J. T. Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 3, 877 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to E. A. Chandross and G. Horowitz for advice. L. Sabbatini, P. Iliade and M. D. Angione are acknowledged for discussions. We are grateful to L. Dimo for assistance in the LS depositions. Italian MIUR ‘Bando DM 1105 del 9/10/2002 Progetto n.ro 100/2’, Progetto FIRB 2003 ‘SYNERGY RBNE0 3S7XZ_001’ and ‘PRIN-06 Project—2006037708—Plastic bio-FET sensors’ are acknowledged for partial financial support. While the present manuscript was under revision another paper was published (Huang, J., Miragliotta, J., Becknell, A. & Katz, H. E., J. Am. Chem. Soc. 129, 9366-9376 (2007)) proposing a two-layer OTFT sensor.

Author information

Authors and Affiliations

Authors

Contributions

All authors have agreed to all the content of the manuscript, including the data as presented.

Corresponding authors

Correspondence to Luisa Torsi or Francesco Naso.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torsi, L., Farinola, G., Marinelli, F. et al. A sensitivity-enhanced field-effect chiral sensor. Nature Mater 7, 412–417 (2008). https://doi.org/10.1038/nmat2167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing