Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversible tuning of a block-copolymer nanostructure via electric fields

Abstract

Block copolymers consisting of incompatible components self-assemble into microphase-separated domains yielding highly regular structures with characteristic length scales of the order of several tens of nanometres. Therefore, in the past decades, block copolymers have gained considerable potential for nanotechnological applications, such as in nanostructured networks and membranes, nanoparticle templates and high-density data storage media1,2,3,4. However, the characteristic size of the resulting structures is usually determined by molecular parameters of the constituent polymer molecules and cannot easily be adjusted on demand. Here, we show that electric d.c. fields can be used to tune the characteristic spacing of a block-copolymer nanostructure with high accuracy by as much as 6% in a fully reversible way on a timescale in the range of several milliseconds. We discuss the influence of various physical parameters on the tuning process and study the time response of the nanostructure to the applied field. A tentative explanation of the observed effect is given on the basis of anisotropic polarizabilities and permanent dipole moments of the monomeric constituents. This electric-field-induced effect further enhances the high technological potential of block-copolymer-based soft-lithography applications5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the effect of an electric field on the lamellar distance of a block-copolymer solution.
Figure 2: Dependence of the relative change in the lamellar distance Δd=(dperpendiculardparallel)/dwithout field on the electric-field strength E.
Figure 3: Time dependence of the lamellar distance of aligned lamellae.

Similar content being viewed by others

References

  1. Hashimoto, T., Tsutsumi, K. & Funaki, Y. Nanoprocessing based on bicontinuous microdomains of block copolymers: Nanochannels coated with metals. Langmuir 13, 6869–6872 (1997).

    Article  CAS  Google Scholar 

  2. Bates, F. S., Rosedale, J. H. & Fredrickson, G. H. Fluctuation effects in a symmetric diblock copolymer near the order-disorder transition. J. Chem. Phys. 92, 6255–6270 (1990).

    Article  CAS  Google Scholar 

  3. Bates, F. S. & Fredrickson, G. H. Block copolymers—Designer soft materials. Phys. Today 52, 32–38 (1999).

    Article  CAS  Google Scholar 

  4. Urbas, A. et al. Tunable block copolymer/homopolymer photonic crystals. Adv. Mater. 12, 812–814 (2000).

    Article  CAS  Google Scholar 

  5. Böker, A. in Nanostructured Soft Matter: Experiment, Theory, Simulation and Perspectives (ed. Zvelindovsky, A. V.) 199–230 (Springer, Berlin, 2007).

    Book  Google Scholar 

  6. Park, C., Yoon, J. & Thomas, E. L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44, 6725–6760 (2003).

    Article  CAS  Google Scholar 

  7. Amundson, K., Helfand, E., Quan, X. & Smith, S. D. Alignment of lamellar block-copolymer microstructure in an electric-field 1. Alignment kinetics. Macromolecules 26, 2698–2703 (1993).

    Article  CAS  Google Scholar 

  8. Thurn-Albrecht, T., DeRouchey, J., Russell, T. P. & Jaeger, H. M. Overcoming interfacial interactions with electric fields. Macromolecules 33, 3250–3253 (2000).

    Article  CAS  Google Scholar 

  9. Thurn-Albrecht, T., DeRouchey, J., Russell, T. P. & Kolb, R. Pathways toward electric field induced alignment of block copolymers. Macromolecules 35, 8106–8110 (2002).

    Article  CAS  Google Scholar 

  10. Böker, A. et al. Microscopic mechanisms of electric-field-induced alignment of block copolymer microdomains. Phys. Rev. Lett. 89, 135502 (2002).

    Article  Google Scholar 

  11. Böker, A. et al. Large scale domain alignment of a block copolymer from solution using electric fields. Macromolecules 35, 1319–1325 (2002).

    Article  Google Scholar 

  12. Xu, T., Zhu, Y. Q., Gido, S. P. & Russell, T. P. Electric field alignment of symmetric diblock copolymer thin films. Macromolecules 37, 2625–2629 (2004).

    Article  CAS  Google Scholar 

  13. Böker, A. et al. Electric field induced alignment of concentrated block copolymer solutions. Macromolecules 36, 8078–8087 (2003).

    Article  Google Scholar 

  14. Schmidt, K. et al. Influence of initial order on the microscopic mechanism of electric field induced alignment of block copolymer microdomains. Langmuir 21, 11974–11980 (2005).

    Article  CAS  Google Scholar 

  15. Böker, A. et al. The influence of incompatibility and dielectric contrast on the electric field-induced orientation of lamellar block copolymers. Polymer 47, 849–857 (2006).

    Article  Google Scholar 

  16. Schmidt, K. et al. Scaling behavior of the reorientation kinetics of block copolymers exposed to electric fields. Soft Matter 3, 448–453 (2007).

    Article  CAS  Google Scholar 

  17. Amundson, K. et al. Alignment of lamellar block-copolymer microstructure in an electric-field.2. Mechanisms of alignment. Macromolecules 27, 6559–6570 (1994).

    Article  CAS  Google Scholar 

  18. Winey, K. I., Thomas, E. L. & Fetters, L. J. Swelling a lamellar diblock copolymer with homopolymer—influences of homopolymer concentration and molecular-weight. Macromolecules 24, 6182–6188 (1991).

    Article  CAS  Google Scholar 

  19. Winey, K. I., Thomas, E. L. & Fetters, L. J. Ordered morphologies in binary blends of diblock copolymer and homopolymer and characterization of their intermaterial dividing surfaces. J. Chem. Phys. 95, 9367–9375 (1991).

    Article  CAS  Google Scholar 

  20. Tanaka, H., Hasegawa, H. & Hashimoto, T. Ordered structure in mixtures of a block copolymer and homopolymers.1. Solubilization of low-molecular-weight homopolymers. Macromolecules 24, 240–251 (1991).

    Article  CAS  Google Scholar 

  21. Jeong, U. Y. et al. Precise control of nanopore size in thin film using mixtures of asymmetric block copolymer and homopolymer. Macromolecules 36, 10126–10129 (2003).

    Article  CAS  Google Scholar 

  22. Gurovich, E. On microphase separation of block-copolymers in an electric-field-4 universal classes. Macromolecules 27, 7339–7362 (1994).

    Article  CAS  Google Scholar 

  23. Gurovich, E. Why does an electric-field align structures in copolymers. Phys. Rev. Lett. 74, 482–485 (1995).

    Article  CAS  Google Scholar 

  24. Matsen, M. W. & Bates, F. S. Block copolymer microstructures in the intermediate-segregation regime. J. Chem. Phys. 106, 2436–2448 (1997).

    Article  CAS  Google Scholar 

  25. de Gennes, P. G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, Cornell, 1991).

    Google Scholar 

  26. Huang, C. I., Chapman, B. R., Lodge, T. P. & Balsara, N. P. Quantifying the ‘neutrality’ of good solvents for block copolymers: Poly(styrene-b-isoprene) in toluene, benzene, and THF. Macromolecules 31, 9384–9386 (1998).

    Article  CAS  Google Scholar 

  27. Adachi, K. & Kotaka, T. Dielectric normal-mode relaxation. Prog. Polym. Sci. 18, 585–622 (1993).

    Article  CAS  Google Scholar 

  28. Lodge, T. P. & McLeish, T. C. B. Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules 33, 5278–5284 (2000).

    Article  CAS  Google Scholar 

  29. Furukawa, J., Yamashita, S., Kotani, T. & Kawashim, M. Stiffness of molecular chain of synthetic rubber. J. Appl. Polym. Sci. 13, 2527 (1969).

    Article  CAS  Google Scholar 

  30. Schmalz, H. et al. Synthesis and properties of ABA and ABC triblock copolymers with glassy, elastomeric, and crystalline blocks. Macromolecules 34, 8720–8729 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Krejtschi and his team for assistance with building the capacitors, F. Schubert, F. Fischer, E. Di Cola, M. Sztucki, P. Bösecke and T. Narayanan for help at the ESRF and Y. Tsori and D. Andelman for fruitful discussions. We are grateful to the ESRF for provision of synchrotron beam time. V.U. acknowledges LDRD sponsorship through US-DOE ORNL/UT-Battelle Contract No. DE-AC05-00OR22725. This work was carried out in the framework of the Sonderforschungsbereich 481 (TP A2) funded by the German Science Foundation (DFG). A.B. acknowledges support by the Lichtenberg-Programm of the VolkswagenStiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Böker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, K., Schoberth, H., Ruppel, M. et al. Reversible tuning of a block-copolymer nanostructure via electric fields. Nature Mater 7, 142–145 (2008). https://doi.org/10.1038/nmat2068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2068

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing