Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The rise of graphene

Abstract

Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mother of all graphitic forms.
Figure 2: One-atom-thick single crystals: the thinnest material you will ever see.
Figure 3: Ambipolar electric field effect in single-layer graphene.
Figure 4: Chiral quantum Hall effects.
Figure 5: Minimum conductivity of graphene.
Figure 6: Towards graphene-based electronics.

References

  1. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    CAS  Google Scholar 

  2. McClure, J. W. Diamagnetism of graphite. Phys. Rev. 104, 666–671 (1956).

    CAS  Google Scholar 

  3. Slonczewski, J. C. & Weiss, P. R. Band structure of graphite. Phys. Rev. 109, 272–279 (1958).

    CAS  Google Scholar 

  4. Semenoff, G. W. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449–2452 (1984).

    Google Scholar 

  5. Fradkin, E. Critical behavior of disordered degenerate semiconductors. Phys. Rev. B 33, 3263–3268 (1986).

    CAS  Google Scholar 

  6. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the 'parity anomaly'. Phys. Rev. Lett. 61, 2015–2018 (1988).

    CAS  Google Scholar 

  7. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  8. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Google Scholar 

  9. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  10. Zhang, Y., Tan, J. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    CAS  Google Scholar 

  11. Peierls, R. E. Quelques proprietes typiques des corpses solides. Ann. I. H. Poincare 5, 177–222 (1935).

    Google Scholar 

  12. Landau, L. D. Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion 11, 26–35 (1937).

    CAS  Google Scholar 

  13. Landau, L. D. & Lifshitz, E. M. Statistical Physics, Part I (Pergamon, Oxford, 1980).

    Google Scholar 

  14. Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968).

    Google Scholar 

  15. Venables, J. A., Spiller, G. D. T. & Hanbucken, M. Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399–459 (1984).

    Google Scholar 

  16. Evans, J. W., Thiel, P. A. & Bartelt, M. C. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Sur. Sci. Rep. 61, 1–128 (2006).

    CAS  Google Scholar 

  17. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    CAS  Google Scholar 

  18. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature (in the press); doi:10.1038/nature05545.

    CAS  Google Scholar 

  19. Nelson, D. R., Piran, T. & Weinberg, S. Statistical Mechanics of Membranes and Surfaces (World Scientific, Singapore, 2004).

    Google Scholar 

  20. Partoens, B. & Peeters, F. M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 74, 075404 (2006).

    Google Scholar 

  21. Morozov, S. V. et al. Two-dimensional electron and hole gases at the surface of graphite. Phys. Rev. B 72, 201401 (2005).

    Google Scholar 

  22. Zhang, Y., Small, J. P., Amori, M. E. S. & Kim, P. Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. 94, 176803 (2005).

    Google Scholar 

  23. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).

    CAS  Google Scholar 

  24. Shioyama, H. Cleavage of graphite to graphene. J. Mater. Sci. Lett. 20, 499–500 (2001).

    CAS  Google Scholar 

  25. Viculis, L. M., Mack, J. J., & Kaner, R. B. A chemical route to carbon nanoscrolls. Science 299, 1361 (2003).

    CAS  Google Scholar 

  26. Horiuchi, S. et al. Single graphene sheet detected in a carbon nanofilm. Appl. Phys. Lett. 84, 2403–2405 (2004).

    CAS  Google Scholar 

  27. Krishnan, A. et al. Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451–454 (1997).

    CAS  Google Scholar 

  28. Land, T. A., Michely, T., Behm, R. J., Hemminger, J. C. & Comsa, G. STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf. Sci. 264, 261–270 (1992).

    CAS  Google Scholar 

  29. Nagashima, A. et al. Electronic states of monolayer graphite formed on TiC(111) surface. Surf. Sci. 291, 93–98 (1993).

    CAS  Google Scholar 

  30. van Bommel, A. J., Crombeen, J. E. & van Tooren, A. LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463–472 (1975).

    Google Scholar 

  31. Forbeaux, I., Themlin, J.-M. & Debever, J. M. Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 58, 16396–16406 (1998).

    CAS  Google Scholar 

  32. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    CAS  Google Scholar 

  33. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    CAS  Google Scholar 

  34. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    CAS  Google Scholar 

  35. Ohashi, Y., Koizumi, T., Yoshikawa, T., Hironaka, T. & Shiiki, K. Size effect in the in-plane electrical resistivity of very thin graphite crystals. TANSO 235–238 (1997).

  36. Bunch, J. S., Yaish, Y., Brink, M., Bolotin, K. & McEuen, P. L. Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287–290 (2005).

    CAS  Google Scholar 

  37. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  38. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. & Eklund, P. C. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6, 2667–2673 (2006).

    CAS  Google Scholar 

  39. Divigalpitiya, W. M. R., Frindt, R. F. & Morrison, S. R. Inclusion systems of organic molecules in restacked single-layer molybdenum disulfide. Science 246, 369–371 (1989).

    CAS  Google Scholar 

  40. Klein, A., Tiefenbacher, S., Eyert, V., Pettenkofer, C. & Jaegermann, W. Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions. Phys. Rev. B 64, 205416 (2001).

    Google Scholar 

  41. Schedin, F. et al. Detection of individual gas molecules by graphene sensors. Preprint at http://arxiv.org/abs/cond-mat/0610809 (2006).

  42. Novoselev, K. S. et al. Room-temperature quantum Hall effect in graphene. Science (in the press); doi:10.1126/science.1137201.

    CAS  Google Scholar 

  43. Schakel, A. M. J. Relativistic quantum Hall effect. Phys. Rev. D 43, 1428–1431 (1991).

    CAS  Google Scholar 

  44. González, J., Guinea, F. & Vozmediano, M. A. H. Unconventional quasiparticle lifetime in graphite. Phys. Rev. Lett. 77, 3589–3592 (1996).

    Google Scholar 

  45. Gorbar, E. V., Gusynin, V. P., Miransky, V. A. & Shovkovy, I. A. Magnetic field driven metal-insulator phase transition in planar systems. Phys. Rev. B 66, 045108 (2002).

    Google Scholar 

  46. Katsnelson, M. I. Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B 51, 157–160 (2006).

    CAS  Google Scholar 

  47. Katsnelson, M. I, Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys 2, 620–625 (2006).

    CAS  Google Scholar 

  48. Tworzydlo, J., Trauzettel, B., Titov, M., Rycerz, A. & Beenakker, C. W. J. Quantum-limited shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006).

    CAS  Google Scholar 

  49. Zawadzki, W. Electron transport phenomena in small-gap semiconductors. Adv. Phys. 23, 435–522 (1974).

    CAS  Google Scholar 

  50. Luk'yanchuk, I. A. & Kopelevich, Y. Dirac and normal fermions in graphite and graphene: Implications of the quantum Hall effect. Phys. Rev. Lett. 97, 256801 (2006).

    Google Scholar 

  51. Zhou, S. Y. et al. First direct observation of Dirac fermions in graphite. Nature Phys. 2, 595–599 (2006).

    CAS  Google Scholar 

  52. Zheng, Y. & Ando, T. Hall conductivity of a two-dimensional graphite system. Phys. Rev. B 65, 245420 (2002).

    Google Scholar 

  53. Gusynin, V. P. & Sharapov, S. G. Unconventional integer quantum Hall effect in graphene Phys. Rev. Lett. 95, 146801 (2005).

    CAS  Google Scholar 

  54. Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006).

    Google Scholar 

  55. MacDonald, A. H. Quantized Hall conductance in a relativistic two-dimensional electron gas. Phys. Rev. B 28, 2235–2236 (1983).

    Google Scholar 

  56. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).

    Google Scholar 

  57. Mikitik, G. P. & Sharlai, Yu.V. Manifestation of Berry's phase in metal physics. Phys. Rev. Lett. 82, 2147–2150 (1999).

    CAS  Google Scholar 

  58. McCann, E. & Fal'ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Google Scholar 

  59. McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006).

    Google Scholar 

  60. Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by electric field effect. Preprint at http://arxiv.org/abs/cond-mat/0611342 (2006).

  61. Lee, P. A. Localized states in a d-wave superconductor. Phys. Rev. Lett. 71, 1887–1890 (1993).

    CAS  Google Scholar 

  62. Ludwig, A. W. W., Fisher, M. P. A., Shankar, R. & Grinstein, G. Integer quantum Hall transition: An alternative approach and exact results. Phys. Rev. B 50, 7526–7552 (1994).

    CAS  Google Scholar 

  63. Ziegler, K. Delocalization of 2D Dirac fermions: the role of a broken symmetry. Phys. Rev. Lett. 80, 3113–3116 (1998).

    CAS  Google Scholar 

  64. Ostrovsky, P. M., Gornyi, I. V. & Mirlin, A. D. Electron transport in disordered graphene. Phys. Rev. B 74, 235443 (2006).

    Google Scholar 

  65. Nomura, K. & MacDonald, A. H. Quantum transport of massless Dirac fermions in graphene. Preprint at http://arxiv.org/abs/cond-mat/0606589 (2006).

  66. Nilsson, J., Castro Neto, A. H., Guinea, F. & Peres, N. M. R. Electronic properties of graphene multilayers. Preprint at http://arxiv.org/abs/cond-mat/0604106 (2006).

  67. Morozov, S. V. et al. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006).

    CAS  Google Scholar 

  68. Aleiner, I. L. & Efetov, K. B. Effect of disorder on transport in graphene. Phys. Rev. Lett. 97, 236801 (2006).

    CAS  Google Scholar 

  69. Das Sarma, S., Hwang, E. H., Tse, W. K. Is graphene a Fermi liquid? Preprint at http://arxiv.org/abs/cond-mat/0610581 (2006).

  70. McCann, E. et al. Weak localisation magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 97, 146805 (2006).

    CAS  Google Scholar 

  71. Morpurgo, A. F. & Guinea, F. Intervalley scattering, long-range disorder, and effective time reversal symmetry breaking in graphene. Phys. Rev. Lett. 97, 196804 (2006).

    CAS  Google Scholar 

  72. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Anomalously large conductance fluctuations in weakly disordered graphene. Preprint at http://arxiv.org/abs/cond-mat/0612446 (2006).

  73. Nomura, K. & MacDonald, A. H. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 96, 256602 (2006).

    Google Scholar 

  74. Yang, K., Das Sarma, S. & MacDonald, A. H. Collective modes and skyrmion excitations in graphene SU(4) quantum Hall ferromagnets. Phys. Rev. B 74, 075423 (2006).

    Google Scholar 

  75. Apalkov, V. M. & Chakraborty, T. The fractional quantum Hall states of Dirac electrons in graphene. Phys. Rev. Lett. 97, 126801 (2006).

    Google Scholar 

  76. Khveshchenko, D. V. Composite Dirac fermions in graphene. Preprint at http://arxiv.org/abs/cond-mat/0607174 (2006).

  77. Alicea, J. & Fisher, M. P. A. Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes, Phys. Rev. B 74, 075422 (2006).

    Google Scholar 

  78. Khveshchenko, D. V. Ghost excitonic insulator transition in layered graphite. Phys. Rev. Lett. 87, 246802 (2001).

    CAS  Google Scholar 

  79. Abanin, D. A., Lee, P. A. & Levitov, L. S. Spin-filtered edge states and quantum Hall effect in graphene. Phys. Rev. Lett. 96, 176803 (2006).

    Google Scholar 

  80. Toke, C., Lammert, P. E., Crespi, V. H. & Jain, J. K. Fractional quantum Hall effect in graphene. Phys. Rev. B 74, 235417 (2006).

    Google Scholar 

  81. Zhang, Y. et al. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).

    CAS  Google Scholar 

  82. Schliemann, J., Loss, D. & Westervelt, R. M. Zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum wells. Phys. Rev. Lett. 94, 206801 (2005).

    Google Scholar 

  83. Topinka, M. A., Westervelt, R. M. & Heller, E. J. Imaging electron flow. Phys. Today 56, 47–53 (2003).

    CAS  Google Scholar 

  84. Cortijo, A. & Vozmediano, M. A. H. Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B 763, 293–308 (2007).

    Google Scholar 

  85. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    CAS  Google Scholar 

  86. Brey, L. & Fertig, H. A. Electronic states of graphene nanoribbons. Phys. Rev. B 73, 235411 (2006).

    Google Scholar 

  87. Son, Y. W, Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons Phys. Rev. Lett. 97, 216803 (2006).

    Google Scholar 

  88. Tilke, A. T., Simmel, F. C., Blick, R. H, Lorenz, H. & Kotthaus, J. P. Coulomb blockade in silicon nanostructures. Prog. Quantum Electron. 25, 97–138 (2001).

    CAS  Google Scholar 

  89. Takahashi, Y., Ono, Y., Fujiwara, A. & Inokawa, H. Silicon single-electron devices. J. Phys. Condens. Matter 14, R995–R1033 (2002).

    CAS  Google Scholar 

  90. Tseng, A. A., Notargiacomo A. & Chen T. P. Nanofabrication by scanning probe microscope lithography: A review. J. Vac. Sci. Tech. B 23, 877–894 (2005).

    CAS  Google Scholar 

  91. Hill, E. W., Geim, A. K., Novoselov, K., Schedin, F. & Blake, P. Graphene spin valve devices. IEEE Trans. Magn. 42, 2694–2696 (2006).

    Google Scholar 

  92. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature (in the press); doi:10.1038/nature05555.

    CAS  Google Scholar 

  93. Sofo, O., Chaudhari, A. & Barber, G. D. Graphane: a two-dimensional hydrocarbon. Preprint at http://arxiv.org/abs/cond-mat/0606704 (2006).

Download references

Acknowledgements

We are most grateful to Irina Grigorieva, Alberto Morpurgo, Uli Zeitler, Antonio Castro Neto and Allan MacDonald for many useful comments that helped to improve this review. The image of crumpled graphene on the cover of this issue was kindly provided by Jannik Meyer. The work was supported by EPSRC (UK), the Royal Society and the Leverhulme trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Geim or K. S. Novoselov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geim, A., Novoselov, K. The rise of graphene. Nature Mater 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing