Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals

Abstract

Nanocrystal organizations represent a new generation of materials with specific properties compared with those of isolated nanocrystals and of the bulk material. Here, we present the first intrinsic crystalline growth properties of highly ordered mono- and multilayers of 5 nm silver nanocrystals. Triangular single crystals with face-centred-cubic structures are obtained by annealing the ordered nanocrystals under atmospheric pressure at 50 C. The triangles are mixed with well-crystallized coalesced particles of various shapes. Their size depends on the initial nanocrystal ordering range on the substrate, which is local on amorphous carbon and highly extended on highly oriented pyrolitic graphite (HOPG). Hence, the single-crystal size is larger on HOPG than on amorphous carbon. These observations show that the crystalline growth properties of silver nanocrystals can be tailored by controlling their organization. Furthermore, on HOPG an epitaxial orientation of the triangles is observed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 2D and 3D silver nanocrystal organizations on amorphous carbon: effect of annealing time.
Figure 2: 2D and 3D silver nanocrystal organizations on HOPG: effect of annealing time.
Figure 3: Electron diffraction patterns of triangular silver particles on HOPG.
Figure 4: TEM images of annealing time effects on the triangular silver single-crystal formation on HOPG.
Figure 5: Coalescence of silver nanocrystals on HOPG.
Figure 6

Similar content being viewed by others

References

  1. Pileni, M.-P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 105, 3358–3371 (2001).

    Article  CAS  Google Scholar 

  2. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organizations of CdSe nanocrystallites into three-dimensional quantum dots superlattices. Science 270, 1335–1338 (1995).

    Article  CAS  Google Scholar 

  3. Sun, S. & Murray, C. B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85, 4325–4330 (1999).

    Article  CAS  Google Scholar 

  4. Courty, A., Fermon, C. & Pileni, M.-P. “Supra crystals” made of nanocrystals. Adv. Mater. 13, 254–258 (2001).

    Article  CAS  Google Scholar 

  5. Lisiecki, I., Albouy, P.-A. & Pileni, M.-P. Face-centered cubic “supracrystals” of cobalt nanocrystals. Adv. Mater. 15, 712–716 (2003).

    Article  CAS  Google Scholar 

  6. Taleb, A., Russier, V., Courty, A. & Pileni, M.-P. Collective optical properties of silver nanoparticles organized in two-dimensional superlattices. Phys. Rev. B 59, 13350–13358 (1999).

    Article  CAS  Google Scholar 

  7. Petit, C., Russier, V. & Pileni, M.-P. Effect of the structure of cobalt nanocrystal organization on the collective magnetic properties. J. Phys. Chem. B 107, 10333–10336 (2003).

    Article  CAS  Google Scholar 

  8. Courty, A., Mermet, A., Albouy, P.-A., Duval, E. & Pileni, M.-P. Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals. Nature Mater. 4, 395–397 (2005).

    Article  CAS  Google Scholar 

  9. Courty, A., Albouy, P.-A., Mermet, A., Duval, E. & Pileni, M.-P. Intrinsic vibrational coherence in face-centered cubic supra-crystals of silver nanocrystals: Raman scattering measurements. J. Phys. Chem. B 109, 21159–21166 (2005).

    Article  CAS  Google Scholar 

  10. Zaitseva, N., Dai, Z. R., Leon, F. R. & Krol, D. Optical properties of CdSe superlattices. J. Am. Chem. Soc. 127, 10221–10225 (2005).

    Article  CAS  Google Scholar 

  11. Germain, V. & Pileni, M.-P. Size distribution of cobalt nanocrystals: A key parameter in formation of columns and labyrinths in mesoscopic structures. Adv. Mater. 17, 1424–1429 (2005).

    Article  CAS  Google Scholar 

  12. Lisiecki, I., Parker, D., Salzeman, C. & Pileni, M.-P. Face-centered cubic supra crystals and disordered three-dimensional assemblies of 7.5 nm cobalt nanocrystals: Influence of the mesoscopic ordering on the magnetic properties. Chem. Mater. 19, 4030–4036 (2007).

    Article  CAS  Google Scholar 

  13. El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001).

    Article  CAS  Google Scholar 

  14. Jin, R. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

    Article  CAS  Google Scholar 

  15. Germain, V., Brioude, A., Ingert, D. & Pileni, M.-P. Silver nanodisks: Size selection via centrifugation and optical properties. J. Chem. Phys. 122, 124707 (2005).

    Article  CAS  Google Scholar 

  16. Ino, S. & Ogawa, S. Multiply twinned particles at earlier stages of gold film formation on alkalihalide crystals. J. Phys. Soc. Jpn 22, 1365–1374 (1967).

    Article  CAS  Google Scholar 

  17. Allpress, J. G. & Sanders, J. V. The structure and orientation of crystals in deposits of metals on mica. Surf. Sci. 7, 1–25 (1967).

    Article  Google Scholar 

  18. Honjo, G. & Yagi, K. Studies of epitaxial growth of metallic and nonmetallic films by means of high resolution ciné and still-electron microscopy. J. Vac. Sci. Technol. 6, 576–582 (1969).

    Article  CAS  Google Scholar 

  19. Yagi, K., Takayanagi, K., Kobayashi, K. & Honjo, G. In-situ observations of growth processes of multiply twinned particles. J. Cryst. Growth 28, 117–124 (1975).

    Article  CAS  Google Scholar 

  20. Barkai, M., Gruenbaum, E. & Deutscher, G. The influence of previous substrate heat treatment on the epitaxial growth of silver on mica. Thin Solid Films 90, 85–90 (1982).

    Article  CAS  Google Scholar 

  21. Heinemann, K., Osaka, T., Poppa, H. & Avalos-Borja, M. In situ transmission electron microscope studies of palladium on MgO. J. Catal. 83, 61–78 (1983).

    Article  CAS  Google Scholar 

  22. Doraiswamy, N., Jayaram, G. & Marks, L. D. Unusual island structures in Ag growth on Si(100)-(2×1). Phys. Rev. B 51, 10167–10170 (1995).

    Article  CAS  Google Scholar 

  23. Baski, A. A. & Fuchs, H. Epitaxial growth of silver on mica as studied by AFM and STM. Surf. Sci. 313, 275–288 (1994).

    Article  CAS  Google Scholar 

  24. Chapon, C., Granjeaud, S., Humbert, A. & Henry, C. R. Structure and morphology of nanometer-sized Pd clusters grown at high temperature on natural graphite single crystals. Eur. Phys. J. 13, 23–30 (2001).

    CAS  Google Scholar 

  25. Pastoriza-Santos, I. & Liz-Marzan, L. M. Synthesis of silver nanoprisms in DMF. Nano Lett. 2, 903–905 (2002).

    Article  CAS  Google Scholar 

  26. Métraux, G. S. & Mirkin, C. A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater. 17, 412–415 (2005).

    Article  Google Scholar 

  27. Jin, R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    Article  CAS  Google Scholar 

  28. Bastys, V., Pastoriza-Santos, I., Rodriguez-Gonzalez, B., Vaisnoras, R. & Liz-Marzan, L. M. Formation of silver nanoprisms with surface plasmons at communication wavelengths. Adv. Funct. Mater. 16, 766–773 (2006).

    Article  CAS  Google Scholar 

  29. Morriss, R. H., Bottoms, W. R. & Peacock, R. G. Growth and defect structure of lamellar gold microcrystals. J. Appl. Phys. 39, 3016–3021 (1967).

    Article  Google Scholar 

  30. Cherns, D. Direct resolution of surface atomic steps by transmission electron microscopy. Phil. Mag. 30, 549–556 (1974).

    Article  CAS  Google Scholar 

  31. Germain, V., Li, J., Ingert, D., Wang, Z. L. & Pileni, M.-P. Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 107, 8717–8720 (2003).

    Article  CAS  Google Scholar 

  32. Giorgio, S., Henry, C. R. & Chapon, C. HRTEM studies of the epitaxial growth of Pd particles (1–6 nm) on ZnO micro-prisms. Microsc. Microanal. Microstruct. 6, 237–248 (1995).

    Article  CAS  Google Scholar 

  33. Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153–1175 (2000).

    Article  CAS  Google Scholar 

  34. Lofton, C. & Sigmund, W. Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 15, 1197–1208 (2005).

    Article  CAS  Google Scholar 

  35. Wang, Z. L. Structural analysis of self-assembling nanocrystal superlattices. Adv. Mater. 1, 13–30 (1998).

    Article  Google Scholar 

  36. Dasog, M. & Scott, R. W. J. Understanding the oxidative stability of gold monolayer-protected clusters in the presence of halide ions under ambient conditions. Langmuir 23, 3381–3387 (2007).

    Article  CAS  Google Scholar 

  37. Korgel, B. A., Zaccheroni, N. & Fitzmaurice, D. Melting transition of a quantum dot solid: collective interactions influence the thermally-induced order-disorder transition of a silver nanocrystal superlattice. J. Am. Chem. Soc. 121, 3533–3534 (1999).

    Article  CAS  Google Scholar 

  38. Li, L., Yang, J. J. & Minton, T. K. Morphological changes at a silver surface resulting from exposure to hyperthermal atomic oxygen. J. Phys. Chem. C 111, 6763–6771 (2007).

    Article  CAS  Google Scholar 

  39. Taleb, A., Silly, F., Gusev, A. O., Charra, F. & Pileni, M.-P. Electron transport properties of nanocrystals: isolated, and “supra”- crystalline phases. Adv. Mater. 12, 633–637 (2000).

    Article  CAS  Google Scholar 

  40. Pradeep, T., Mitra, S., Sreekumaran Nair, A. & Mukhopadhyay, R. Dynamics of alkyl chains in monolayer-protected Au and Ag clusters and silver thiolates: A comprehensive quasielastic neutron scattering investigation. J. Phys. Chem. B 108, 7012–7020 (2004).

    Article  CAS  Google Scholar 

  41. José-Yacaman, M. et al. Surface diffusion and coalescence of mobile metal nanoparticles. J. Phys. Chem. B 109, 9703–9711 (2005).

    Article  Google Scholar 

  42. Courty, A., Lisiecki, I. & Pileni, M.-P. Vibration of self-organized silver nanocrystals. J. Chem. Phys. 116, 8074–8078 (2002).

    Article  CAS  Google Scholar 

  43. Giersig, M., Pastoriza-Santos, I. & Liz-Marzan, L. Evidence of an aggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide. J. Mater. Chem. 14, 607–610 (2004).

    Article  CAS  Google Scholar 

  44. Wiley, B., Herricks, T., Sun, Y. & Xia, Y. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 4, 1733–1739 (2004).

    Article  CAS  Google Scholar 

  45. Bardotti, L. et al. Diffusion and aggregation of large antimony and gold clusters deposited on graphite. Surf. Sci. 367, 276–292 (1996).

    Article  CAS  Google Scholar 

  46. Yoon, B. et al. Morphology control of the supported islands grown from soft-landed clusters. Surf. Sci. 443, 76–88 (1999).

    Article  CAS  Google Scholar 

  47. Taleb, A., Petit, C. & Pileni, M.-P. Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2D and 3D self-organization. Chem. Mater. 9, 950–959 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank for fruitful discussions: Z. L. Wang of Georgia Institute of Technology, Atlanta, USA; P.-A. Albouy of the laboratory ‘Physique des Solides’ University of Paris XI, Orsay, France and F. Charra of the laboratory ‘Etudes des Propriétés aux Echelles Nanométriques’ (LEPMEN-SPCI), CEA, Saclay, France. We also thank D. Parker of the laboratory ‘Matériaux Mésoscopiques et Nanométriques’ for checking the English in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-P. Pileni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 1154 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courty, A., Henry, AI., Goubet, N. et al. Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals. Nature Mater 6, 900–907 (2007). https://doi.org/10.1038/nmat2004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2004

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing