Letter abstract

Nature Materials 6, 749 - 753 (2007)
Published online: 9 September 2007 | doi:10.1038/nmat2007

Subject Category: Materials for energy

A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries

B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill & L. F. Nazar


In the search for new positive-electrode materials for lithium-ion batteries, recent research has focused on nanostructured lithium transition-metal phosphates that exhibit desirable properties such as high energy storage capacity combined with electrochemical stability1, 2. Only one member of this class—the olivine LiFePO4 (ref. 3)—has risen to prominence so far, owing to its other characteristics, which include low cost, low environmental impact and safety. These are critical for large-capacity systems such as plug-in hybrid electric vehicles. Nonetheless, olivine has some inherent shortcomings, including one-dimensional lithium-ion transport and a two-phase redox reaction that together limit the mobility of the phase boundary4, 5, 6, 7. Thus, nanocrystallites are key to enable fast rate behaviour8, 9. It has also been suggested that the long-term economic viability of large-scale Li-ion energy storage systems could be ultimately limited by global lithium reserves, although this remains speculative at present. (Current proven world reserves should be sufficient for the hybrid electric vehicle market, although plug-in hybrid electric vehicle and electric vehicle expansion would put considerable strain on resources and hence cost effectiveness.) Here, we report on a sodium/lithium iron phosphate, A2FePO4F (A=Na, Li), that could serve as a cathode in either Li-ion or Na-ion cells. Furthermore, it possesses facile two-dimensional pathways for Li+ transport, and the structural changes on reduction–oxidation are minimal. This results in a volume change of only 3.7% that—unlike the olivine—contributes to the absence of distinct two-phase behaviour during redox, and a reversible capacity that is 85% of theoretical.

  1. Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2L 3G1, Canada

Correspondence to: L. F. Nazar e-mail: lfnazar@uwaterloo.ca


These links to content published by NPG are automatically generated.


Lithium-ion batteries An unexpected conductor

Nature Materials News and Views (01 Oct 2002)

Nanomaterials Viruses electrify battery research

Nature Nanotechnology News and Views (01 Jun 2009)


Supplementary Information

Nature Materials Article (01 Sep 2008)

Supplementary Information

Nature Materials Article (01 Aug 2008)

See all 24 matches for Research

Extra navigation

Subscribe to Nature Materials