Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetic behaviour of layered Ag(II) fluorides

Abstract

Fluoride phases that contain the spin-1/2 4d9 Ag(II) ion have recently been predicted to have interesting or unusual magnetochemistry, owing to their structural similarity to the 3d9 Cu(II) cuprates and the covalence associated with this unusual oxidation state of silver. Here we present a comprehensive study of structure and magnetism in the layered Ag(II) fluoride Cs2AgF4, using magnetic susceptometry, inelastic neutron scattering techniques and both X-ray and neutron powder diffraction. We find that this material is well described as a two-dimensional ferromagnet, in sharp contrast to the high-TC cuprates and a previous report in the literature. Analyses of the structural data show that Cs2AgF4 is orbitally ordered at all temperatures of measurement. Therefore, we suggest that orbital ordering may be the origin of the ferromagnetism we observe in this material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molar susceptibility measurements and hysteresis measurement for Cs2AgF4.
Figure 2: Inelastic neutron scattering data for Cs2AgF4.
Figure 3: Inelastic neutron scattering from Cs2AgF4 with Ei=50 meV.
Figure 4: Orbital ordering scenarios for Jahn–Teller active 3d9 and 4d9 layered perovskites.

Similar content being viewed by others

References

  1. Grochala, W. & Hoffmann, R. Real and hypothetical intermediate-valence Ag-II/Ag-III and Ag-II/Ag-I fluoride systems as potential superconductors. Angew. Chem. Int. Edn 40, 2742–2781 (2001).

    Article  Google Scholar 

  2. Grochala, W., Porch, A. & Edwards, P. P. Meissner-Ochsenfeld superconducting anomalies in the Be–Ag–F system. Solid State Commun. 130, 137–142 (2004).

    Article  Google Scholar 

  3. Muller-Rosing, H.-C., Schulz, A. & Hargittai, M. Structure and bonding in silver halides. A quantum chemical study of the monomers: Ag2X, AgX, AgX2 and AgX3 (X=F, Cl, Br, I). J. Am. Chem. Soc. 127, 8133–8145 (2005).

    Article  Google Scholar 

  4. Grochala, W. & Edwards, P. P. “Unconventional covalent” KAgF3 is metallic above 50 K. Phys. Status Solidi B 240, R11–R14 (2003).

    Article  Google Scholar 

  5. Grochala, W., Egdell, R. G., Edwards, P. P., Mazej, Z. & Zemva, B. On the covalency of silver-fluorine bonds in compounds of silver(I), silver(II) and silver(III). ChemPhysChem 4, 997–1001 (2003).

    Article  Google Scholar 

  6. Muller-Buschbaum, H. On the crystal chemistry of oxoargentates and silver oxometallates. Z. Anorg. Allg. Chem. 630, 2125–2175 (2004).

    Article  Google Scholar 

  7. Srochinski, D., Dziegiec, Y. & Grzejdziak, A. Ag(II) and Ag(III) complexes and Ag(II)/Ag(I) and Ag(III)/Ag(II) redox systems in the presence of heterocyclic amines. Russ. J. Coord. Chem. 23, 447–460 (1997).

    Google Scholar 

  8. Housecroft, C. E. Silver. Coord. Chem. Rev. 115, 141–161 (1992).

    Article  Google Scholar 

  9. Odenthal, R. H., Paus, D. & Hoppe, R. Magnetochemistry of divalent silver. New fluoroargentates(II). Dicesium, dirubidium, and dipotassium tetrafluoroargentates. Z. Anorg. Allg. Chem. 407, 144–150 (1974).

    Article  Google Scholar 

  10. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or 2-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1137 (1966).

    Article  Google Scholar 

  11. Moussa, F. & Villain, J. Spin-wave lineshape in 2-dimensional K2CuF4—neutron experiments and theory. J. Phys. C 9, 4433–4451 (1976).

    Article  Google Scholar 

  12. Li, W. H. et al. Polarized neutron studies of forbidden magnons in the two-dimensional ferromagnet dipotassium tetrafluorocuprate(II). Phys. Rev. B 35, 1891–1898 (1987).

    Article  Google Scholar 

  13. Hidaka, M., Inoue, K., Yamada, I. & Walker, P. J. X-ray diffraction study of the crystal structures of potassium copper fluoride (K2CuF4) and potassium copper zinc fluoride (K2CuxZn1−xF4) . Physica B& C 121, 343–350 (1983).

    Article  Google Scholar 

  14. Khomskii, D. I. & Kugel, K. I. Orbital and magnetic structure of two-dimensional ferromagnets with Jahn-Teller ions. Solid State Commun. 13, 763–766 (1973).

    Article  Google Scholar 

  15. Jahn, H. A. & Teller, E. Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc. R. Soc. A 161, 220–235 (1937).

    Article  Google Scholar 

  16. Albright, T. A., Burdett, J. K. & Whangbo, M. H. Orbital Interactions in Chemistry (Wiley, London, 1985).

    Google Scholar 

  17. Koo, H. J. & Whangbo, M. H. Analysis of the spin exchange interactions in the extended magnetic solids K2NiF4, K2CuF4, La2CuO4, Nd2CuO4, KNiF3, and KCuF3 . J. Solid State Chem. 151, 96–101 (2000).

    Article  Google Scholar 

  18. Hayes, W. & Wilkens, A. An investigation of the Ni+ ion in irradiated LiF and NiF. Proc. R. Soc. A 281, 340–365 (1964).

    Article  Google Scholar 

  19. Garcia-Lastra, J. M., Aramburu, J. A., Barriuso, M. T. & Moreno, M. Impurities in noncubic crystals: stabilization mechanisms for Jahn-Teller ions in layered perovskites. Phys. Rev. Lett. 93, 226402 (2004).

    Article  Google Scholar 

  20. Moritomo, Y. & Tokura, Y. Pressure-induced disappearance of the in-plane lattice distortion in layered cupric chloride: (C2H5NH3)2CuCl4 . J. Chem. Phys. 101, 1763–1766 (1994).

    Article  Google Scholar 

  21. Mostovoy, M. V. & Khomskii, D. I. Orbital ordering in charge transfer insulators. Phys. Rev. Lett. 92, 167201 (2004).

    Article  Google Scholar 

  22. Peterson, P. F., Gutmann, M., Proffen, T. & Billinge, S. J. L. PDFgetN: a user-friendly program to extract the total scattering structure factor and the pair distribution function from neutron powder diffraction data. J. Appl. Crystallogr. 33, 1192 (2000).

    Article  Google Scholar 

  23. Larson, A. C. & von Dreele, R. B. Los Alamos National Laboratory Report LAUR86-748 (1986).

  24. Baker, G. A., Gilber, H. E., Eve, J. & Rushbroo, Gs. On 2-dimensional spin-1/2 heisenberg ferromagnetic models. Phys. Lett. A 25, 207–209 (1967).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank J. A. del Toro and the staff at the University of Liverpool for the use of their superconducting quantum interference device magnetometer, D. Scalapino, D. I. Khomskii and D. J. Singh for critical readings of the manuscript, and D. Argyriou for useful discussions. We would also like to thank W. Hayes for drawing our attention to relevant literature and S. Clarke for the use of a glove box. S.E.M. acknowledges support from the US National Science Foundation through award OISE-0404938. Financial support was also provided by the EU through the Human Potential Programme under IHP-ARI contract HPRI-CT-1999-00020, the Manuel Lujan Neutron Scattering Center, funded by the US Department of Energy Office of Basic Energy Sciences, and Los Alamos National Laboratory, funded by the US Department of Energy under contract W-7405-ENG-36. J.F.C.T. acknowledges the financial support of the US National Science Foundation, through a CAREER award (Grant No. CHE 0349010), and the University of Tennessee through the Neutron Sciences Consortium.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John F. C. Turner or Ted Barnes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLain, S., Dolgos, M., Tennant, D. et al. Magnetic behaviour of layered Ag(II) fluorides. Nature Mater 5, 561–565 (2006). https://doi.org/10.1038/nmat1670

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1670

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing