Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complete shape retention in the transformation of silica to polymer micro-objects

Abstract

Controlled morphogenesis and shape replication are challenges for several rapidly developing fields of materials science1,2,3,4. Indeed, although complex forms have been generated by the condensation of inorganic matter in organized media5,6,7,8,9,10,11, the shaping of plastic matter on the micrometre scale is still limited to simple forms that are typically obtained as inverse replicas of channel-like cavities12,13,14 and colloidal crystals15,16. Here we report the fabrication of individual plastic micro-objects that follow an elaborate design and are faithful copies of nanoporous inorganic morphotypes. The direct replica method produces an unprecedented library of curved geometrical solids made of plastics, such as cones, bicones, hollow cylinders, rings, test tubes, clubs and vases. The shape retention of the original structures on the microscale and the creation of a new nanostructure produced objects with homogeneous nanopores of 7 nm and cylindrical microcavities as large as 1 μm. This strategy of shape transcription from one material to another opens new perspectives in microfabrication, separation, anchorage and storage of chemical and biological species. Until now it has not been possible to realize such transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM of micro-objects obtained by the replica process.
Figure 2: SEM images of a variety of micrometre-sized objects made of PS and shaped to curved geometries.
Figure 3: Thermogravimetric analysis, adsorption properties and DSC.
Figure 4: TEM images and Fourier diffractograms.

Similar content being viewed by others

References

  1. Mann, S. The chemistry of forms. Angew. Chem. Int. Edn 39, 3392–3406 (2000).

    Article  Google Scholar 

  2. Stupp, S. I. & Braun, P. V. Molecular manipulation of microstructures: biomaterials, ceramics and semiconductors. Science 277, 1242–1248 (1999).

    Article  Google Scholar 

  3. Jiang, P., Bertone, J. F. & Colvin, V. L. A lost-wax approach to monodisperse colloids and their crystals. Science 291, 453–457 (2001).

    Article  Google Scholar 

  4. Trau, M., Yao, N., Kim, E., Whitesides, G. M. & Aksay, I. A. Microscopic patterning of orientated mesoscopic silica through guided growth. Nature 390, 674–676 (1997).

    Article  Google Scholar 

  5. Mann, S. & Ozin, G. A. Synthesis of inorganic materials with complex form. Nature 382, 313–318 (1996).

    Article  Google Scholar 

  6. Yang, H., Coombs, N. & Ozin, G. A. Morphogenesis of shapes and surface patterns in mesoporours silica. Nature 386, 692–695 (1997).

    Article  Google Scholar 

  7. Yang, S. M., Sokolov, I., Coombs, N., Kresge, C. T. & Ozin, G. A. Formation of hollow helicoids in mesoporous silica: supramolecular origami. Adv. Mater. 11, 1427–1431 (1999).

    Article  Google Scholar 

  8. Aizenberg, J., Black, A. J. & Whitesides, G. M. Control of crystal nucleation by patterned self-assembled monolayers. Nature 398, 495–497 (1999).

    Article  Google Scholar 

  9. Li, M., Scgnablegger, H. & Mann, S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393–395 (1999).

    Article  Google Scholar 

  10. Wu, Y. et al. Composite mesostructures by nano-confinement. Nature Mater. 3, 816–822 (2004).

    Article  Google Scholar 

  11. Lu, Y. et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398, 223–226 (1999).

    Article  Google Scholar 

  12. Steinhart, M. et al. Polymer nanotubes by wetting of ordered porous templates. Science 296, 1997 (2002).

    Article  Google Scholar 

  13. Cepak, V. M. & Martin, C. R. Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chem. Mater. 11, 1363–1367 (1999).

    Article  Google Scholar 

  14. Moon, S. I. & McCarthy, T. J. Template synthesis and self-assembly of nanoscopic polymer ‘‘pencils’’. Macromolecules 36, 4253–4255 (2003).

    Article  Google Scholar 

  15. Yang, Z., Huck, W. T. S., Clarke, S. M., Tajbakhsh, A. R. & Terentjev, E. M. Shape-memory nanoparticles from inherently non-spherical polymer colloids. Nature Mater. 4, 486–490 (2005).

    Article  Google Scholar 

  16. Johnson, S. A., Ollivier, P. J. & Mallouk, T. E. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 283, 963–965 (1999).

    Article  Google Scholar 

  17. Yang, P. et al. Hierarchically ordered oxides. Science 282, 2244–2246 (1998).

    Article  Google Scholar 

  18. Wu, C. G. & Bein, T. Conducting polyaniline filaments in a mesoporous channel host. Science 264, 1757–1759 (1994).

    Article  Google Scholar 

  19. Kageyama, K., Tamazawa, J.-I. & Aida, T. Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science 285, 2113–2115 (1999).

    Article  Google Scholar 

  20. Lu, Y. et al. Self-assembly of mesoscopically ordered chromatic polyacetylene/silica nanocomposites. Nature 410, 913–917 (2001).

    Article  Google Scholar 

  21. Stucky, G. D. Polymers all in a row. Nature 410, 885–886 (2001).

    Article  Google Scholar 

  22. Spange, S. et al. Synthesis of inorganic/organic host-guest hybrid materials by cationic vinyl polymerization within Y zeolites and MCM-41. Chem. Mater. 13, 3698–3708 (2001).

    Article  Google Scholar 

  23. Choi, M. et al. Controlled polymerization in mesoporous silica toward the design of organic-inorganic composite nanoporous materials. J. Am. Chem. Soc. 127, 1924–1932 (2005).

    Article  Google Scholar 

  24. Moller, K. & Bein, T. Inclusion chemistry in periodic mesoporous hosts. Chem. Mater. 10, 2950–2963 (1998).

    Article  Google Scholar 

  25. Johnson, S. A., Khushalani, D., Coombs, N., Mallouk, T. E. & Ozin, G. A. Polymer mesofibers. J. Mater. Chem. 8, 13–14 (1998).

    Article  Google Scholar 

  26. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  Google Scholar 

  27. Sokolov, I., Yang, H., Ozin, G. A. & Kresge, C. T. Radial patterns in mesoporous silica. Adv. Mater. 11, 636–642 (1999).

    Article  Google Scholar 

  28. Sokolov, I. & Kievsky, Y. 3D Design of self-assembled nanoporous colloids. Stud. Surf. Sci. Catal. 156, 433–443 (2005).

    Article  Google Scholar 

  29. Zalusky, A. S., Olayo-Valles, R., Wolf, J. H. & Hillmyer, M. A. Ordered nanoporous polymers from polystyrene-polylactide block copolymers. J. Am. Chem. Soc. 124, 12761–12773 (2002).

    Article  Google Scholar 

  30. Grosso, D. et al. Two-dimensional hexagonal mesoporous silica thin films prepared from block copolymers: detailed characterization and formation mechanism. Chem. Mater. 13, 1848–1856 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the CARIPLO Foundation and the European Network of Excellence (Nanofun-Poly) for financial support. Our thanks are due to S. Ndoni for small angle X-ray scattering measurements, R. Cristina-Reggiani for SEM images, G. Pagani for providing the dye molecule, and M. Beretta and S. Nicali for technical support. M. P. Longhese and M. Clerici are acknowledged for observations of DNA diffusion into micro-objects and M. D. Ward for helpful suggestions. O.T. and Y.S. thank the Swedish Science Council (VR) and the Japan Science and Technology Agency (JST) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Sozzani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures 1 - 12 (PDF 2429 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sozzani, P., Bracco, S., Comotti, A. et al. Complete shape retention in the transformation of silica to polymer micro-objects. Nature Mater 5, 545–551 (2006). https://doi.org/10.1038/nmat1659

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1659

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing