Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiphase imaging of gas flow in a nanoporous material using remote-detection NMR

Abstract

Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering or as reactors. We report a model study on silica aerogel using a time-of-flight magnetic resonance imaging technique to characterize the flow field and explain the effects of heterogeneities in the pore structure on gas flow and dispersion with 129Xe as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides insights into the dynamics of flow in porous media where several phases or chemical species may be present.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of a basic remote-detection pulse sequence.
Figure 2: Chemical shift as contrast property to distinguish spins inside and outside the aerogel.
Figure 3: Time-resolved multiphase flow visualization.
Figure 4: Slice-selective TOF images of free gas.
Figure 5: Dependence of hydrodynamic dispersion on the origin of xenon during encoding.
Figure 6: Heterogeneity of hydrodynamic dispersion: probing pore space variations of the aerogel.

Similar content being viewed by others

References

  1. Jang, S. H., Wientjes, M. G., Lu, D. & Au, J. L.-S. Drug delivery and transport to solid tumors. Pharm. Res. 20, 1337–1350 (2003).

    Article  Google Scholar 

  2. Gladden, L. F., Lim, M. H. M., Mantle, M. D., Sederman, A. J. & Stitt, E. H. MRI visualization of two-phase flow in structured supports and trickle-bed reactors. Catal. Today 79, 203–210 (2003).

    Article  Google Scholar 

  3. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  Google Scholar 

  4. Mair, R. W., Tseng, C.-H., Wong, G. P., Cory, D. G. & Walsworth, R. L. Magnetic resonance imaging of convection in laser-polarized xenon. Phys. Rev. E 61, 2741–2748 (2000).

    Article  Google Scholar 

  5. Gregory, D. M., Gerald, R. E. & Botto, R. E. Pore-structure determinations of silica aerogels by 129Xe NMR spectroscopy and imaging. J. Magn. Reson. 131, 327–335 (1998).

    Article  Google Scholar 

  6. Gibiat, V., Lefeuvre, O., Woignier, T., Pelous, J. & Phalippou, J. Acoustic properties and potential applications of silica aerogels. J. Non-Cryst. Solids 186, 244–255 (1995).

    Article  Google Scholar 

  7. Hua, D. W., Anderson, J., Di Gregorio, J., Smith, D. M. & Beaucage, G. Structural analysis of silica aerogels. J. Non-Cryst. Solids 186, 142–148 (1995).

    Article  Google Scholar 

  8. Power, M., Hosticka, B., Black, E., Daitch, C. & Norris, P. Aerogels as biosensors: viral particle detection by bacteria immovilized on large pore aerogel. J. Non-Cryst. Solids 285, 303–308 (2001).

    Article  Google Scholar 

  9. Guise, M., Hosticka, B., Earp, B. & Norris, P. M. An experimental investigation of aerosol collection utilizing packed beds of silica aerogel microspheres. J. Non-Cryst. Solids 285, 317–322 (2001).

    Article  Google Scholar 

  10. Sumiyoshi, T. et al. Silica aerogels in high energy physics. J. Non-Cryst. Solids 225, 369–374 (1998).

    Article  Google Scholar 

  11. Fricke, J. (ed.) in Aerogels (Springer Proceedings in Physics, Vol. 6, Springer, Berlin, 1986).

  12. Hosticka, B., Norris, P. M., Brenizer, J. S. & Daitch, C. E. Gas flow through aerogels. J. Non-Cryst. Solids 225, 293–297 (1998).

    Article  Google Scholar 

  13. Hunt, A. J. & Lofftus, K. D. in Better Ceramics Through Chemistry III (eds Brinker, C. J., Clark, D. E. & Ulrich, D. R.) 679–684 (Materials Research Society Symposia Proceedings, Vol. 121, Materials Research Society, Pittsburgh, 1988).

    Google Scholar 

  14. El Rassy, H. & Pierre, A. C. NMR and IR spectroscopy of silica aerogels with different hydrophobic characteristics. J. Non-Cryst. Solids 351, 1603–1610 (2005).

    Article  Google Scholar 

  15. Emmerling, A. & Fricke, J. Small angle scattering and the structure of aerogels. J. Non-Cryst. Solids 145, 113–120 (1992).

    Article  Google Scholar 

  16. Schaefer, D. W. & Keefer, K. D. Structure of random porous materials: silica aerogel. Phys. Rev. Lett. 56, 2199–2202 (1986).

    Article  Google Scholar 

  17. Marlière, C. et al. Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments. J. Non-Cryst. Solids 285, 148–153 (2001).

    Article  Google Scholar 

  18. Ruben, G. C., Hrubesh, L. W. & Tillotson, T. M. High-resolution transmission electron microscopy nanostructure of condensed silica-aerogel. J. Non-Cryst. Solids 186, 209–218 (1995).

    Article  Google Scholar 

  19. Reichenauer, G., Stumpf, C. & Fricke, J. Characterization of SiO2, RF and carbon aerogels by dynamic gas expansion. J. Non-Cryst. Solids 186, 334–341 (1995).

    Article  Google Scholar 

  20. Gavalda, S., Kaneko, K., Thomson, K. T. & Gubbins, K. E. Molecular modeling of carbon aerogels. Colloids Surf. A 187, 531–538 (2001).

    Article  Google Scholar 

  21. Callaghan, P. T. Principles of Nuclear Magnetic Resonance Microscopy (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  22. Mair, R. W. et al. Probing porous media with gas diffusion NMR. Phys. Rev. Lett. 83, 3324–3327 (1999).

    Article  Google Scholar 

  23. Kaiser, L. G., Meersmann, T., Logan, J. W. & Pines, A. Visualization of gas flow and diffusion in porous media. Proc. Natl Acad. Sci. USA 97, 2414–2418 (2000).

    Article  Google Scholar 

  24. Guillot, G., Nacher, P.-J. & Tastevin, G. NMR diffusion of hyperpolarized3He in aerogel: a systematic pressure study. Magn. Reson. Imag. 19, 391–394 (2001).

    Article  Google Scholar 

  25. Terskikh, V. V., Mudrakovskii, I. L. & Mastikhin, V. M. 129Xe nuclear magnetic resonance studies of the porous structure of silica gels. J. Chem. Soc. Faraday Trans. 89, 4239–4243 (1993).

    Article  Google Scholar 

  26. Moudrakovski, I. L. et al. Nuclear magnetic resonance studies of resorcinol-formaldehyde aerogels. J. Phys. Chem. B 109, 11215–11222 (2005).

    Article  Google Scholar 

  27. Demarquay, J. & Fraissard, J. Xe-129 NMR of xenon adsorbed on zeolites—relationship between the chemical-shift and the void space. Chem. Phys. Lett. 136, 314–318 (1987).

    Article  Google Scholar 

  28. Ripmeester, J. A. & Ratcliffe, C. I. On the application of 129Xe NMR to the study of microporous solids. J. Phys. Chem. 94, 7652–7656 (1990).

    Article  Google Scholar 

  29. Terskikh, V. V. et al. A general correlation for the 129Xe NMR chemical shift-pore size relationship in porous silica-based materials. Langmuir 18, 5653–5656 (2002).

    Article  Google Scholar 

  30. Zax, D. B., Bielecki, A., Zilm, K. W., Pines, A. & Weitekamp, D. P. Zero field NMR and NQR. J. Chem. Phys. 83, 4877–4905 (1985).

    Article  Google Scholar 

  31. Moulé, A. J. et al. Amplification of xenon NMR and MRI by remote detection. Proc. Natl Acad. Sci. USA 100, 9122–9127 (2003).

    Article  Google Scholar 

  32. Seeley, J. A., Han, S. & Pines, A. Remote detected high-field MRI of porous samples. J. Magn. Reson. 167, 282–290 (2004).

    Article  Google Scholar 

  33. Granwehr, J. & Seeley, J. A. Sensitivity quantification of remote detection NMR and MRI. J. Magn. Reson. 179, 229–238 (2006).

    Article  Google Scholar 

  34. Koptyug, I. V., Altobelli, S. A., Fukushima, E., Matveev, A. V. & Sagdeev, R. Z. Thermally polarized H-1 NMR microimaging studies of liquid and gas flow in monolithic catalysts. J. Magn. Reson. 147, 36–42 (2000).

    Article  Google Scholar 

  35. Granwehr, J. et al. Time-of-flight flow imaging using NMR remote detection. Phys. Rev. Lett. 95, 075503 (2005).

    Article  Google Scholar 

  36. Hilty, C. et al. Microfluidic gas-flow profiling using remote detection NMR. Proc. Natl Acad. Sci. USA 102, 14960–14963 (2005).

    Article  Google Scholar 

  37. Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186–203 (1953).

    Article  Google Scholar 

  38. Han, S. et al. Improved NMR based bio-sensing with optimized delivery of polarized 129Xe to solutions. Anal. Chem. 77, 4008–4012 (2005).

    Article  Google Scholar 

  39. Granwehr, J., Urban, J. T., Trabesinger, A. H. & Pines, A. NMR detection using laser-polarized xenon as a dipolar sensor. J. Magn. Reson. 176, 125–139 (2005).

    Article  Google Scholar 

  40. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C 2nd edn (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

Download references

Acknowledgements

We would like to thank S. Garcia for help with probe hardware, and P. N. Sen, S. Han and V. V. Telkki for helpful discussions. E.H. is supported by a fellowship from the US Department of Homeland Security under DOE contract number DE-AC05-00OR22750. This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Nuclear Sciences Divisions of the US Department of Energy under contract DE-AC03-76SF0098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Pines.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harel, E., Granwehr, J., Seeley, J. et al. Multiphase imaging of gas flow in a nanoporous material using remote-detection NMR. Nature Mater 5, 321–327 (2006). https://doi.org/10.1038/nmat1598

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1598

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing