Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct visualization of defect-mediated dissociation of water on TiO2(110)

Abstract

The chemistry of metal oxide surfaces has long been thought to be dominated by reactions involving defects1,2. These are minority sites such as oxygen vacancies. Thus far, it has proved difficult to obtain direct experimental evidence to support this idea, although some progress has been made3,4,5. Here, we use the scanning tunnelling microscope (STM) to image the reaction of water molecules with bridging-oxygen vacancies on a model oxide surface, rutile TiO2(110). In a form of single-molecule chemistry, individual oxygen vacancies are observed being transformed into OH species as a water molecule dissociates in the vacancy. We use the STM tip to selectively desorb individual H atoms, whilst leaving the vacancies intact. This allows us to distinguish between vacancies and OH, which have a similar appearance in STM. In a very clear way, these results validate the view that defects can play a key role in oxide surface reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depictions of reactions on TiO2(110).
Figure 2: Sequential 150×150 Å2 STM images of as-prepared TiO2(110).
Figure 3: Sequential (285 Å×250 Å) STM images of TiO2(110) recorded at 1.5 V, 0.2 nA.
Figure 4: Reaction of O2 with O vacancies on TiO2(110).

Similar content being viewed by others

References

  1. Henrich, V. E. & Cox, P. A. The Surface Science of Metal Oxides (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  2. Freund, H.-J. Oxide surfaces. Faraday Discuss. 114, 1–31 (1999).

    Article  Google Scholar 

  3. Henderson, M. A. et al. Interaction of molecular oxygen with the vacuum-annealed TiO2(110) surface: Molecular and dissociative channels. J. Phys. Chem. B 103, 5328–5337 (1999).

    Article  Google Scholar 

  4. Epling, W. S., Peden, C. H. F., Henderson, M. A. & Diebold, U. Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites. Surf. Sci. 412–413, 333–343 (1998).

    Article  Google Scholar 

  5. Aizawa, M. et al. Oxygen vacancy promoting catalytic dehydration of formic acid on TiO2(110) by in situ scanning tunneling microscopic observation. J. Phys. Chem. B 109, 18831–18838 (2005).

    Article  Google Scholar 

  6. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  Google Scholar 

  7. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  Google Scholar 

  8. Blossey, R. Self-cleaning surfaces — virtual realities. Nature Mater. 2, 301–306 (2003).

    Article  Google Scholar 

  9. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  Google Scholar 

  10. Onishi, H., Fukui, K. & Iwasawa, Y. Atomic-scale surface structures of TiO2 (110) determined by scanning tunneling microscopy: A new surface-limited phase of titanium oxide. Bull. Chem. Soc. Jpn 68, 2447–2458 (1995).

    Article  Google Scholar 

  11. Diebold, U., Anderson, J. F., Ng, K.-O. & Vanderbilt, D. Evidence for the tunneling site on transition-metal oxides: TiO2(110) . Phys. Rev. Lett. 77, 1322–1325 (1996).

    Article  Google Scholar 

  12. Diebold, U. et al. Intrinsic defects on a TiO2(110) (1×1) surface and their reaction with oxygen: A scanning tunneling microscopy study. Surf. Sci. 411, 137–153 (1998).

    Article  Google Scholar 

  13. Suzuki, S., Fukui, K., Onishi, H. & Iwasawa, Y. Hydrogen adatoms on TiO2(110)-(1×1) characterized by scanning tunneling microscopy and electron stimulated desorption. Phys. Rev. Lett. 84, 2156–2159 (2000).

    Article  Google Scholar 

  14. Schaub, R. et al. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110) . Phys. Rev. Lett. 87, 266104 (2001).

    Article  Google Scholar 

  15. Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002).

    Article  Google Scholar 

  16. Brookes, I. M., Muryn, C. A. & Thornton, G. Imaging water dissociation on TiO2(110) . Phys. Rev. Lett. 87, 266103 (2001).

    Article  Google Scholar 

  17. Lindan, P. J. D. & Zhang, C. Exothermic water dissociation on the rutile TiO2(110) surface. Phys. Rev. B 72, 075439 (2005).

    Article  Google Scholar 

  18. Mayne, A. J., Rose, F. & Dujardin, G. Inelastic interactions of tunnel electrons with surfaces. Faraday Discuss. 117, 241–248 (2000).

    Article  Google Scholar 

  19. Ruscic, B. et al. On the enthalpy of formation of hydroxyl radical and gas-phase bond dissociation energies of water and hydroxyl. J. Phys. Chem. A 106, 2727–2747 (2002).

    Article  Google Scholar 

  20. Shen, T.-C. et al. Atomic-scale desorption through electronic and vibrational-excitation mechanisms. Science 268, 1590–1592 (1995).

    Article  Google Scholar 

  21. Avouris, Ph. et al. Breaking individual chemical bonds via STM-induced excitations. Surf. Sci. 363, 368–377 (1996).

    Article  Google Scholar 

  22. Onda, K. et al. Wet electrons at the H2O /TiO2(110) surface. Science 308, 1154–1158 (2005).

    Article  Google Scholar 

  23. Diebold, U. et al. High transient mobility of chlorine on TiO2(110) : Evidence for “cannon-ball” trajectories of hot adsorbates. Phys. Rev. Lett. 81, 405–408 (1998).

    Article  Google Scholar 

  24. Hofer, W. A., Foster, A. S. & Shluger, A. L. Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 75, 1287–1331 (2003).

    Article  Google Scholar 

  25. Knotek, M. L. & Feibelman, P. J. Ion desorption by core-hole Auger decay. Phys. Rev. Lett. 40, 964–967 (1978).

    Article  Google Scholar 

  26. Farfan-Arribas, E. & Madix, R. J. Characterization of the acid-base properties of the TiO2(110) surface by adsorption of amines. J. Phys. Chem. B 107, 3225–3233 (2003).

    Article  Google Scholar 

  27. Schaub, R. et al. Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface. Science 299, 377–379 (2003).

    Article  Google Scholar 

  28. Thompson, T. L., Diwald, O. & Yates, J. T. Jr. Molecular oxygen-mediated vacancy diffusion on TiO2(110)-new studies of the proposed mechanism. Chem. Phys. Lett. 393, 28–30 (2004).

    Article  Google Scholar 

  29. Rasmussen, M. D., Molina, L. M. & Hammer, B. Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110) : A density functional theory study. J. Chem. Phys. 120, 988–997 (2004).

    Article  Google Scholar 

  30. Wu, X., Selloni, A., Lazzeri, M. & Nayak, S. K. Oxygen vacancy mediated adsorption and reactions of molecular oxygen on the TiO2(110) surface. Phys. Rev. B 68, 241402 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by EPSRC (UK), an EU 5th framework grant (OXIDESURFACES), CREST of JST (Japan) and a Royal Society (UK)–JSPS (Japan) grant for collaboration. C.L.P. is grateful to JSPS (Japan) for the award of a Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoff Thornton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bikondoa, O., Pang, C., Ithnin, R. et al. Direct visualization of defect-mediated dissociation of water on TiO2(110) . Nature Mater 5, 189–192 (2006). https://doi.org/10.1038/nmat1592

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1592

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing