Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Macroscopic transport by synthetic molecular machines

Abstract

Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and light-induced positional change of the macrocycle in a fluorinated molecular shuttle, 1.
Figure 2: Locating the position of the macrocycle in a molecular shuttle using proton chemical shifts.
Figure 3: Locating the position of the macrocycle in a molecular shuttle using fluorine chemical shifts.
Figure 4: A photo-responsive surface based on switchable fluorinated molecular shuttles.
Figure 5: Lateral photographs of light-driven directional transport of a 1.25 μl diiodomethane drop across the surface of a E-1.11-MUA.Au(111) substrate on glass.
Figure 6: Lateral photographs of light-driven directional transport of a 1.25 μl diiodomethane drop across the surface of a E-1.11-MUA.Au(111) substrate on mica.
Figure 7: Lateral photographs of light-driven transport of a 1.25 μl diiodomethane drop on a E-1.11-MUA.Au(111) substrate on mica up a 12 incline.

Similar content being viewed by others

References

  1. Schliwa, M. (ed.) Molecular Motors (Wiley-VCH, Weinheim, 2003).

  2. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  Google Scholar 

  3. Soong, R. K., Bachand, G. D., Neves, H. P., Olkhovets, A. G. & Montemagno, C. D. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).

    Article  Google Scholar 

  4. Soong, R. K., Neves, H. P., Schmidt, J. J. & Montemagno, C. D. Engineering issues in the fabrication of a hybrid nano-propeller system powered by F1-ATPase. Biomed. Microdev. 3, 71–73 (2001).

    Article  Google Scholar 

  5. Hess, H., Clemmens, J., Qin, D., Howard, J. & Vogel, V. Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Lett. 1, 235–239 (2001).

    Article  Google Scholar 

  6. Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Mater. 1, 173–177 (2002).

    Article  Google Scholar 

  7. Diez, S. et al. Stretching and transporting DNA molecules using motor proteins. Nano Lett. 3, 1251–1254 (2003).

    Article  Google Scholar 

  8. Hess, H., Bachand, G. D. & Vogel, V. Powering nanodevices with biomolecular motors. Chem. Eur. J. 10, 2110–2116 (2004).

    Article  Google Scholar 

  9. Sauvage, J. P. & Dietrich-Buchecker, C. (eds) Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology (Wiley-VCH, Weinheim, 1999).

  10. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Edn Engl. 39, 3348–3391 (2000).

    Article  Google Scholar 

  11. Balzani, V., Venturi, M. & Credi, A. Molecular Devices and Machines - A Journey into the Nanoworld (Wiley-VCH, Weinheim, 2003).

    Book  Google Scholar 

  12. Kay, E. R. & Leigh, D. A. Synthetic molecular machines. in Functional Artificial Receptors (eds Schrader, T. & Hamilton, A. D.) (Wiley-VCH, Weinheim, 2005).

    Google Scholar 

  13. Huang, T. J. et al. A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 85, 5391–5393 (2004).

    Article  Google Scholar 

  14. Flood, A. H. et al. Meccano on the nanoscale - A blueprint for making some of the world’s tiniest machines. Aust. J. Chem. 57, 301–322 (2004).

    Article  Google Scholar 

  15. Bottari, G., Leigh, D. A. & Pérez, E. M. Chiroptical switching in a bistable molecular shuttle. J. Am. Chem. Soc. 125, 13360–13361 (2003).

    Article  Google Scholar 

  16. Wang, Q. -C., Qu, D. -H., Ren, J., Chen, K. & Tian, H. A lockable light-driven molecular shuttle with a fluorescent signal. Angew. Chem. Int. Edn Engl. 43, 2661–2665 (2004).

    Article  Google Scholar 

  17. Qu, D. -H., Wang, Q. -C., Ren, J. & Tian, H. A light-driven rotaxane molecular shuttle with dual fluorescence addresses. Org. Lett. 6, 2085–2088 (2004).

    Article  Google Scholar 

  18. Pérez, E. M., Dryden, D. T. F., Leigh, D. A., Teobaldi, G. & Zerbetto, F. A generic basis for some simple light-operated mechanical molecular machines. J. Am. Chem. Soc. 126, 12210–12211 (2004).

    Article  Google Scholar 

  19. Leigh, D. A. et al. Patterning through controlled submolecular motion: Rotaxane-based switches and logic gates that function in solution and polymer films. Angew. Chem. Int. Edn Engl. 44, 3062–3067 (2005).

    Article  Google Scholar 

  20. Altieri, A. et al. Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. Angew. Chem. Int. Edn Engl. 42, 2296–2300 (2003).

    Article  Google Scholar 

  21. Masaaki, Y. & Masashi, M. Newest Aspects of Fluoro Functional Materials (CMC, Tokyo, 1994).

    Google Scholar 

  22. Cavallini, M. et al. Information storage using supramolecular surface patterns. Science 299, 531 (2003).

    Article  Google Scholar 

  23. Cecchet, F. et al. Structural, electrochemical, and photophysical properties of a molecular shuttle attached to an acid-terminated self-assembled monolayer. J. Phys. Chem. B 108, 15192–15199 (2004).

    Article  Google Scholar 

  24. Katz, E., Lioubashevsky, O. & Willner, I. Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. J. Am. Chem. Soc. 126, 15520–15532 (2004).

    Article  Google Scholar 

  25. Kim, K. et al. A pseudorotaxane on gold: Formation of self-assembled monolayers, reversible dethreading and rethreading of the ring, and ion-gating behavior. Angew. Chem. Int. Edn Engl. 42, 2293–2296 (2003).

    Article  Google Scholar 

  26. Long, B., Nikitin, K. & Fitzmaurice, D. Assembly of an electronically switchable rotaxane on the surface of a titanium dioxide nanoparticle. J. Am. Chem. Soc. 125, 15490–15498 (2003).

    Article  Google Scholar 

  27. Katz, E., Sheeney Haj, I. & Willner, I. Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. Angew. Chem. Int. Edn Engl. 43, 3292–3300 (2004).

    Article  Google Scholar 

  28. Huang, T. J. et al. Mechanical shuttling of linear motor-molecules in condensed phases on solid substrates. Nano Lett. 4, 2065–2071 (2004).

    Article  Google Scholar 

  29. Tseng, H. -R., Wu, D., Fang, N. X., Zhang, X. & Stoddart, J. F. The metastability of an electrochemically controlled nanoscale machine on gold surfaces. Chem. Phys. Chem. 5, 111–116 (2004).

    Article  Google Scholar 

  30. Jang, S. S. et al. Structures and properties of self-assembled monolayers of bistable [2]rotaxanes on Au (111) surfaces from molecular dynamics simulations validated with experiment. J. Am. Chem. Soc. 127, 1563–1575 (2005).

    Article  Google Scholar 

  31. Liu, Y., Mu, L., Liu, B. & Kong, J. Controlled switchable surfaces. Chem. Eur. J. 11, 2622–2631 (2005).

    Article  Google Scholar 

  32. Grunze, M. Driven liquids. Science 283, 41–42 (1999).

    Article  Google Scholar 

  33. Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283, 46–49 (1999).

    Article  Google Scholar 

  34. Gallardo, B. S. et al. Electrochemical principles for active control of liquids on submillimeter scales. Science 283, 57–61 (1999).

    Article  Google Scholar 

  35. Daniel, S., Chaudhury, M. K. & Chen, J. C. Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633–636 (2001).

    Article  Google Scholar 

  36. Ichimura, K., Oh, S. -K. & Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000).

    Article  Google Scholar 

  37. Oh, S. -K., Nakagawa, M. & Ichimura, K. Photocontrol of liquid motion on an azobenzene monolayer. J. Mater. Chem. 12, 2262–2269 (2002).

    Article  Google Scholar 

  38. Greenspan, H. P. On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84, 125–143 (1978).

    Article  Google Scholar 

  39. Brochard, F. Motions of droplets on solid surfaces induced by chemical or thermal gradients. Langmuir 5, 432–438 (1989).

    Article  Google Scholar 

  40. Neumann, A. W. & Good, R. J. in Surface and Colloid Science Vol. 11 (eds Good, R. J. & Stromberg, R. R.) 31–91 (Plenum, New York, 1979).

    Book  Google Scholar 

  41. Blomstrom, D. C., Herbig, K. & Simmons, H. E. Photolysis of methylene iodide in the presence of olefins. J. Org. Chem. 30, 959–964 (1965).

    Article  Google Scholar 

  42. Pienta, N. J. & Kropp, P. J. Photochemistry of alkyl halides. 6. gem-Diiodides. A convenient method for the cyclopropanation of olefins. J. Am. Chem. Soc. 100, 655–657 (1978).

    Article  Google Scholar 

  43. Kropp, P. J., Pienta, N. J., Sawyer, J. A. & Polniaszek, R. P. Photochemistry of alkyl halides-VII: Cyclopropanation of alkenes. Tetrahedron 37, 3229–3236 (1981).

    Article  Google Scholar 

  44. Tamovsky, A. N., Alvarez, J. -L., Arkady, P., Sundstrom, V. & Akesson, E. Photodissociation dynamics of diiodomethane in solution. Chem. Phys. Lett. 312, 121–130 (1999).

    Article  Google Scholar 

  45. Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Isabel Casades (University of Edinburgh) for preliminary studies on fluoroalkane molecular shuttle systems and Bert de Boer and Sense Jan van der Molen (Materials Science Centre, University of Groningen) for providing heptadecafluorodecanethiol and the Xenon ultraviolet-lamp used in the transport studies. The Secretaría de Estado de Educación y Universidades and Fondo Social Europeo are acknowledged for a Postdoctoral Fellowship to J.B. This work was funded by the Engineering and Physical Sciences Research Council (UK) and as part of the EU research training network EMMMA and the Future and Emerging Technologies project MechMol.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David A. Leigh, Petra Rudolf or Francesco Zerbetto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information and figures (PDF 261 kb)

Supplementary movie

Supplementary movie 1 (AVI 205 kb)

Supplementary movie

Supplementary movie 2 (AVI 230 kb)

Supplementary movie

Supplementary movie 3 (AVI 270 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berná, J., Leigh, D., Lubomska, M. et al. Macroscopic transport by synthetic molecular machines. Nature Mater 4, 704–710 (2005). https://doi.org/10.1038/nmat1455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1455

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing