Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer

Abstract

The goal in biomaterial surface modification is to retain a material's bulk properties while modifying only its surface to possess desired recognition and specificity. Here we develop a unique strategy for surface functionalization of an electrically conductive polymer, chlorine-doped polypyrrole (PPyCl), which has been widely researched for various electronic and biomedical applications. An M13 bacteriophage library was used to screen 109 different 12-mer peptide inserts against PPyCl. A binding phage (ϕT59) was isolated, and its binding stability and specificity to PPyCl was assessed using fluorescence microscopy and titer count analysis. The relative binding strength and mechanism of the corresponding 12-mer peptide and its variants was studied using atomic force microscopy and fluorescamine assays. Further, the T59 peptide was joined to a cell adhesive sequence and used to promote cell attachment on PPyCl. This strategy can be extended to immobilize a variety of molecules to PPyCl for numerous applications. In addition, phage display can be applied to other polymers to develop bioactive materials without altering their bulk properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phage amplification and competitive binding demonstrating that ϕT59 was selected because of its specificity of binding PPyCl.
Figure 2: Titer count analysis of ϕT59 binding to PPyCl compared with the binding of other phage clones and the binding to various substrates.
Figure 3: Qualitative assessment of ϕT59 and T59 peptide binding to PPyCl.
Figure 4: Evaluation of binding of T59 peptide and its variants to PPyCl shows the involvement of specific amino acids.
Figure 5: Strength of T59 peptide binding to PPyCl.
Figure 6: Functionalization of PPyCl using T59 peptide complexed with GRGDS and T59 peptide binding stability to PPyCl.

Similar content being viewed by others

References

  1. Zhang, S. & Altman, M. Peptide self-assembly in functional polymer science and engineering. React. Funct. Polym. 41, 91–102 (1999).

    Article  CAS  Google Scholar 

  2. Valuev, I. L., Chupov, V. V. & Valuev, L. I. Chemical modification of polymers with physiologically active species using water-soluble carbodiimides. Biomater. 19, 41–43 (1998).

    Article  CAS  Google Scholar 

  3. Xiao, S. J., Textor, M. & Spencer, N. Covalent attachment of cell-adhesive, (Arg-Gly-Asp)- containing peptides to titanium surfaces. Langmuir 14, 5507–5516 (2000).

    Article  Google Scholar 

  4. Shakesheff, K., Cannizzaro, S. & Langer, R. Creating biomimetic micro-environments with synthetic polymer-peptide hybrid molecules. J. Biomater. Sci. Polym. E 9, 507–518 (1998).

    Article  CAS  Google Scholar 

  5. Tong, Y. W. & Shoichet, M. S. Peptide surface modification of poly(tetrafluoroethylene-co-hexafluoropropylene) enhances its interaction with central nervous system neurons. J. Biomed. Mater. Res. 42, 85–95 (1998).

    Article  CAS  Google Scholar 

  6. Hrkach, J., Ou, J., Lotan, N. & Langer, R. Poly (L-lactic acid-co-amino acid) graft copolymers. J. Mater. Sci. Res. 78, 92–102 (1999).

    Google Scholar 

  7. Cook, A. D., Pajvani, U. B., Hrkach, J. S., Cannizzaro, S. M. & Langer, R. Colorimetric analysis of surface reactive amino groups on poly(lactic acid-co-lysine):poly(lactic acid) blends. Biomater. 18, 1417–1424 (1997).

    Article  CAS  Google Scholar 

  8. Kubies, D., Rypacek, F., Kovarova, J. & Lednicky, F. Microdomain structure in polylactide-block-poly(ethylene oxide) copolymer films. Biomater. 21, 529–536 (2000).

    Article  CAS  Google Scholar 

  9. Mori, T. Cancer-specific ligands identified from screening of peptide-display libraries. Curr. Pharm. Des. 19, 2335–2343 (2004).

    Article  Google Scholar 

  10. Rowley M. J., O'Connor, K. & Wijeyewickrema, L. Phage display for epitope determination: A paradigm for identifying receptor-ligand interactions. Biotechnol. Annu. Rev. 10, 151–88 (2004).

    Article  CAS  Google Scholar 

  11. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F. & Belcher, A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    Article  CAS  Google Scholar 

  12. Flynn, C. E. et al. Synthesis and organization of nanoscale II VI semiconductor materials using evolved peptide specificity and viral capsid assembly. J. Mater. Chem. 13, 2414–2421 (2003).

    Article  CAS  Google Scholar 

  13. Sano, K. & Shiba, K. A hexapeptide motif that electrostatically binds to the surface of titanium. J. Am. Chem. Soc. 125, 14234–14235 (2003).

    Article  CAS  Google Scholar 

  14. Sarikaya, M., Tamerler, C., Jen, A. K., Schulten, K. & Baneyx F. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    Article  CAS  Google Scholar 

  15. Sarikaya M., Tamerler C., Schwartz D. T. & Baneyx F. Materials assembly and formation using engineered polypeptides. Annu. Rev. Mater. Res. 34, 373–408 (2004).

    Article  CAS  Google Scholar 

  16. Adey, N. B., Mataragnon, A. H., Rider, J. E., Carter, J. M. & Kay, B. K. Characterization of phage that bind plastic from phage-displayed random peptide libraries. Gene 156, 27–31 (1995).

    Article  CAS  Google Scholar 

  17. Berglund, J., Lindbladh, C., Nicholls, I. A. & Mosbach, K. Selection of phage display combinatorial library peptides with affinity for a yohimbine imprinted methacrylate polymer. Anal. Commun. 35, 3–7 (1998).

    Article  CAS  Google Scholar 

  18. Konturri, K., Pentti, P. & Sundholm, G. Polypyrrole as a model membrane for drug delivery. J. Electroanal. Chem. 453, 231–238 (1998).

    Article  Google Scholar 

  19. Schmidt, C. E., Shastri, V. R., Vacanti, J. P. & Langer, R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl Acad. Sci. USA 94, 8948–8953 (1997).

    Article  CAS  Google Scholar 

  20. Valentini, R. F., Vargo, T. G., Gardella, J. A. Jr. & Aebischer, P. Electrically conductive polymeric susbtrates enhance nerve fibre outgrowth in vitro. Biomater. 13, 183–190 (1992).

    Article  CAS  Google Scholar 

  21. Vidal, J. C., Garcia, E. & Castillo, J. R. In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole film electrodeposited in a flow system: Determination of total cholesterol in serum. Anal. Chim. Acta. 385, 213–222 (1999).

    Article  CAS  Google Scholar 

  22. Cui, X., Hetke, J. F., Wiler, J. A., Anderson, D. J. & Martin, D. C. Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sensors Actuat. A 93, 8–18 (2001).

    Article  CAS  Google Scholar 

  23. Wang, L., Li, X. & Yang, Y. Preparation, properties and applications of polypyrroles. React. Funct. Poly. 47, 125–139 (2001).

    Article  CAS  Google Scholar 

  24. Sutar, D., Menon, R. & Subramanyam, S. V. Study of electrical conduction in polypyrrole by varying doping level. Thin Solid Films. 417, 40–42 (2002).

    Article  CAS  Google Scholar 

  25. Silk, T., Hong, Q., Tamm, J. & Compton, R. G. AFM studies of polypyrrole film surface morphology I. The influence of film thickness and dopant nature. Synth. Met. 93, 59–64 (1998).

    Article  CAS  Google Scholar 

  26. Collier, J. H., Camp, J. P., Hudson, T. W. & Schmidt, C. E. Synthesis and characterization of polypyrrole-hyaluronic acid composite biomaterials for tissue engineering applications. J. Biomed. Mater. Res. 50, 574–584 (2000).

    Article  CAS  Google Scholar 

  27. Diaz, A. F., Castillo, J. A., Logan, J. A. & Lee, W. Y. Electrochemistry of conductive polypyrrole films. J. Electroanal. Chem. 129, 115–132 (1981).

    Article  CAS  Google Scholar 

  28. Tamm, J., Hallik, A., Alumaa, A. & Sammelselg, V. Electrochemical properties of polypyrrole/sulphate films. Electrochim. Acta 42, 2929–2934 (1997).

    Article  CAS  Google Scholar 

  29. Lee, S. -W., Mao, C., Flynn, C. E. & Belcher, A. M. Ordering of quantum dots using genetically engineered viruses. Science 296, 892–895 (2002).

    Article  CAS  Google Scholar 

  30. Technical Bulletin E8100, E8110, E8120 1–4 (New England Biolabs, Cambridge, Massachusetts, 2004).

  31. Blackburn, S. Amino Acid Determination: Methods and Techniques 2nd edn, 121–125 (Marcel Dekker, New York, 1978).

    Google Scholar 

  32. Undenfriend, S. et al. Fluorescamine: A reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 172, 871–872 (1972).

    Article  Google Scholar 

  33. Barrett, G. C. & Elmore, D. T. Amino acids and peptides (Cambridge Univ. Press, New York, 1998).

    Book  Google Scholar 

  34. Lee, G. U., Kidwell, D. A. & Colton, R. J. Sensing discrete streptavidin-biotin interactions with atomic force micrscopy. Langmuir 10, 354–357 (1994).

    Article  CAS  Google Scholar 

  35. Dammer, U. et al. Specific antigen/antibody interactions measured by force spectroscopy. Biophys. J. 70, 2437–2441 (1996).

    Article  CAS  Google Scholar 

  36. Nakamura, C. et al. Mechanical force analysis of peptide interactions using atomic force microscopy. Biopolym. (Peptide Sci.) 76, 48–54 (2004).

    Article  CAS  Google Scholar 

  37. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  38. Allison, D. P., Hinterdorfer, P. & Han, W. Biomolecular force measurements and the atomic force microscope. Curr. Opin. Biotech. 13, 47–51 (2002).

    Article  CAS  Google Scholar 

  39. Evans, E. Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss. 111, 1–16 (1998).

    Article  CAS  Google Scholar 

  40. Massia, S. P. & Hubbel, J. A. Covalently attached GRGD on polymer surfaces promotes biospecific adhesion of mammalian cells. Ann. N. Y. Acad. Sci. 589, 261–270 (1988).

    Article  Google Scholar 

  41. Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984).

    Article  CAS  Google Scholar 

  42. Hersel, U., Dahmen, C. & Kessler, H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomater. 24, 4385–4415 (2003).

    Article  CAS  Google Scholar 

  43. Barltrop, J. A., Owen, T. C., Cory, A. H. & Cory, J. G. 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazoly)-3-(4 sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans as cell-viability indicators. Bioorg. Med. Chem. Lett. 1, 611–614 (1991).

    Article  CAS  Google Scholar 

  44. Labrou, N. E. Design and selection of ligands for affinity chromatography. J. Chromatogr. B 790, 67–78 (2003).

    Article  CAS  Google Scholar 

  45. Jozefonvicz, J. & Jozefowicz, M. Review: Interactions of biospecific functional polymers with blood proteins and cells. J. Biomater. Sci. Polym. E 1, 147–165 (1990).

    Article  CAS  Google Scholar 

  46. Lévy, R., & Maaloum, M. Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnol. 13, 33–37 (2002).

    Article  Google Scholar 

  47. Moy, V. T., Florin, E. -L. & Gaub, H. E. Adhesive forces between ligand and receptor measured by AFM. Colloids Surf. A 93, 343–348 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Gillson Longenbaugh Foundation (C. E. S.) and the Welch Foundation (C. E. S.), the Packard Foundation (A. M. B.) and the National Science Foundation (A. M. B.). The authors wish to thank the Center for Nano and Molecular Science and Technology for use of the AFM, and Wolfgang Frey for helpful discussions on peptide interactions and force spectroscopy. We would also like to thank John Mendenhall and Klaus Linse at the Institute of Cellular and Molecular Biology for their help with confocal microscopy and peptide synthesis (and other peptide related discussions), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Schmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary tables I, II and III and detailed methods (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanghvi, A., Miller, KH., Belcher, A. et al. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nature Mater 4, 496–502 (2005). https://doi.org/10.1038/nmat1397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing