Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Nanoionics: ion transport and electrochemical storage in confined systems

Abstract

The past two decades have shown that the exploration of properties on the nanoscale can lead to substantially new insights regarding fundamental issues, but also to novel technological perspectives. Simultaneously it became so fashionable to decorate activities with the prefix 'nano' that it has become devalued through overuse. Regardless of fashion and prejudice, this article shows that the crystallizing field of 'nanoionics' bears the conceptual and technological potential that justifies comparison with the well-acknowledged area of nanoelectronics. Demonstrating this potential implies both emphasizing the indispensability of electrochemical devices that rely on ion transport and complement the world of electronics, and working out the drastic impact of interfaces and size effects on mass transfer, transport and storage. The benefits for technology are expected to lie essentially in the field of room-temperature devices, and in particular in artificial self-sustaining structures to which both nanoelectronics and nanoionics might contribute synergistically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical devices relying on ionic and mixed electronically and ionically conducting solids enable the transformation of chemical energy or information into electrical energy or information (or vice versa).
Figure 2: Ion redistribution at equilibrium.
Figure 3: Size effects classified according to their contribution to the total chemical potential μ̃ (see the text).
Figure 4: Different dimensionalities of interfacially controlled systems in solid-state electronics and ionics.
Figure 5: Reversibility of the redox reaction Li2O + Ru ↔ Li + RuO2 in the nanocomposite upon Li extraction and incorporation77.
Figure 6: Integration of subfunctions in functional solids.
Figure 7: The nano-integration of ionic and electronic 'organs' such as sensors, actuators, computers and fuel cells or batteries results in tiny artificial autonomous systems.

Similar content being viewed by others

References

  1. Kudo, T. & Fueki, K. Solid State Ionics (Kodansha, Tokyo, 1990).

    Google Scholar 

  2. Maier, J. Physical Chemistry of Ionic Materials. Ions and Electrons in Solids (Wiley, Chichester, 2004).

    Google Scholar 

  3. Bruce, P. G. Solid State Electrochemistry (Cambridge Univ. Press, London, 1995).

    Google Scholar 

  4. Bouwmeester, H. J. M. & Gellings, P. J. Solid State Electrochemistry (CRC Press, New York, 1997).

    Google Scholar 

  5. Maier, J. Point defect thermodynamics: Macro- vs. nanocrystals. Electrochemistry 68, 395–402 (2000).

    CAS  Google Scholar 

  6. Maier, J. Aspects of nano-ionics, part I. Thermodynamic aspects and morphology of nano-structured ion conductors. Solid State Ionics 154, 291–301 (2002); Part II. Defect chemistry and ion transport in nanostructured materials. Solid State Ionics 157, 327–334 (2003); Part III. Nano-sized mixed conductors. Solid State Ionics 148, 367–374 (2002).

    Google Scholar 

  7. Maier, J. Nano-ionics: Trivial and non-trivial size effects on ion conduction in solids. Z. Phys. Chem. 217, 415–436 (2003).

    CAS  Google Scholar 

  8. Maier, J. Space charge regions in solid two phase systems and their conduction contribution. III: Defect chemistry and ionic conductivity in thin films. Solid State Ionics 23, 59–67 (1987).

    CAS  Google Scholar 

  9. Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    CAS  Google Scholar 

  10. Reed, M. & Kirle, W. P. Nanostructure Physics and Fabrication (Academic, New York, 1989).

    Google Scholar 

  11. Haug, R. J. & von Klitzing, K. Prospects for research on quantum dots and single-electron transistors. FED J. 6, 4–12 (1995).

    Google Scholar 

  12. Ploog, K. in Semiconductor Interfaces: Formation and Properties (eds Lay, G. L., Derrien, J. & Boccara, N.) 10–42 (Springer Proceedings in Physics 22, Berlin, 1987).

    Google Scholar 

  13. Sze, S. M. Semiconductor Devices (Wiley, New York, 1985).

    Google Scholar 

  14. Jonker, G. H. Some aspects of semiconducting barium titanate. Solid State Electronics 7, 895–903 (1964).

    CAS  Google Scholar 

  15. Seiyama, T., Kato, A., Fujiishi, K. & Nagatani, M. A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502–1503 (1962).

    CAS  Google Scholar 

  16. Maier, J. Ionic transport in nano-sized systems. Solid State Ionics 175, 7–12 (2004).

    CAS  Google Scholar 

  17. Maier, J. Ionic conduction in space charge regions. Prog. Solid State Chem. 23, 171–263 (1995).

    CAS  Google Scholar 

  18. Tuller, H. L. Ionic conduction in nanocrystalline materials. Solid State Ionics 131, 143–157 (2000).

    CAS  Google Scholar 

  19. Schoonman, J. Nanostructured materials in solid state ionics. Solid State Ionics 135–137, 5–19 (2005).

    Google Scholar 

  20. Jamnik, J. & Maier, J. Nanocrystallinity effects in lithium battery materials. (Aspects of nano-ionics. Part IV). Phys. Chem. Chem. Phys. 5, 5215–5220 (2003).

    CAS  Google Scholar 

  21. Despotuli, A. L. & Nikolaichik, V. I. A step towards nanoionics. Solid State Ionics 60, 275–278 (1993).

    CAS  Google Scholar 

  22. Chapman, D. L. A contribution to the theory of electrocapillarity. Phil. Mag. S. 6 25, 475–481 (1913).

    Google Scholar 

  23. Kliewer, K. L. & Koehler, J. S. Space charge in ionic crystals. I. General approach with application to NaCl. Phys. Rev. A 140, A1226–A1240 (1965).

    Google Scholar 

  24. Poeppel, R. B. & Blakely, J. M. Origin of equilibrium space charge potentials in ionic crystals. Surf. Sci. 15, 507–523 (1969).

    CAS  Google Scholar 

  25. Maier, J. Defect chemistry and conductivity effects in heterogeneous solid electrolytes. J. Electrochem. Soc. 134, 1524–1535 (1987).

    CAS  Google Scholar 

  26. Jamnik, J., Maier, J. & Pejovnik, S. Interfaces in solid ionic conductors: Equilibrium and small signal picture. Solid State Ionics 75, 51–58 (1995).

    CAS  Google Scholar 

  27. Puin, W., Rodewald, S., Ramlau, R., Heitjans, P. & Maier, J. Local and overall ionic conductivity in nanocrystalline CaF2 . Solid State Ionics 131, 159–164 (2000).

    CAS  Google Scholar 

  28. Chiang, Y.-M., Lavik, E., Kosacki, I., Tuller, H. L. & Ying, J. Y. Defect and transport properties of nanocrystalline CeO2−x . Appl. Phys. Lett. 69, 185–187 (1996).

    CAS  Google Scholar 

  29. Tschöpe, A., Sommer, E. & Birringer, R. Grain size-dependent electrical conductivity of polycrystalline cerium oxide. I. Experiments. Solid State Ionics 139, 255–265 (2001).

    Google Scholar 

  30. Vollmann, M. & Waser, R. Grain boundary defect chemistry of acceptor-doped titanates: Space charge layer width. J. Am. Ceram. Soc. 77, 235–243 (1994).

    Google Scholar 

  31. Denk, I., Claus, J. & Maier, J. Electrochemical investigations of SrTiO3 boundaries. J. Electrochem. Soc. 144, 3526–3536 (1997).

    CAS  Google Scholar 

  32. Guo, X., Fleig, J. & Maier, J. Separation of electronic and ionic contributions to the grain boundary conductivity in acceptor-doped SrTiO3 . J. Electrochem. Soc. 148, J50–J53 (2001).

    CAS  Google Scholar 

  33. Leonhardt, M., Jamnik, J. & Maier, J. In situ monitoring and quantitative analysis of oxygen diffusion through Schottky-barriers in SrTiO3 bicrystals. Electrochem. Solid-State Lett. 2, 333–335 (1999).

    CAS  Google Scholar 

  34. Kim, S. & Maier, J. On the conductivity mechanism of nanocrystalline ceria. J. Electrochem. Soc. 149, J73–J83 (2002).

    CAS  Google Scholar 

  35. Maier, J. Space charge regions in solid two-phase systems and their conduction contribution. I. Conductance enhancement in the system ionic conductor–'inert' phase and application on AgCl·Al2O3 and AgCl·SiO2 . J. Phys. Chem. Solids 46, 309–320 (1985).

    CAS  Google Scholar 

  36. Liang, C. C. Conduction characteristics of lithium iodide aluminium oxide solid electrolytes. J. Electrochem. Soc. 120, 1289–1292 (1973).

    CAS  Google Scholar 

  37. Chung, R. W. & de Leeuw, S. W. Ionic conduction in LiI-alpha, gamma-alumina: molecular dynamics study. Solid State Ionics 175, 851–855 (2004).

    CAS  Google Scholar 

  38. Maier, J. & Reichert, B. Ionic transport in heterogeneously and homogeneously doped thallium(I)-chloride. Ber. Bunsenges. Phys. Chem. 90, 666–670 (1986).

    CAS  Google Scholar 

  39. Lee, J.-S., Adams, S. & Maier, J. Transport and phase transition characteristics in AgI:Al2O3 composite electrolytes. Evidence for a highly conducting 7-layer AgI polytype. J. Electrochem. Soc. 147, 2407–2418 (2000).

    CAS  Google Scholar 

  40. Yamada, H., Bhattacharyya, A. J. & Maier, J. Extremely high silver ion conductivity in the composites of silver halide (AgBr, AgI) and mesoporous alumina. Adv. Funct. Mater. (in the press).

  41. Maekawa, H., Tanaka, R., Sato, T., Fujimaki, Y. & Yamamura, T. Size-dependent ionic conductivity observed for ordered mesoporous alumina-LiI composite. Solid State Ionics 175, 281–285 (2004).

    CAS  Google Scholar 

  42. Hariharan, K. & Maier, J. Enhancement of the fluoride vacancy conduction in PbF2:SiO2 and PbF2:Al2O3 composites. J. Electrochem. Soc. 142, 3469–3473 (1995).

    CAS  Google Scholar 

  43. Bhattacharyya, A. J. & Maier, J. Second phase effects on the conductivity of non-aqueous salt solutions: 'soggy sand electrolytes'. Adv. Mater. 16, 811–814 (2004).

    CAS  Google Scholar 

  44. Croce, F., Appetechi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    CAS  Google Scholar 

  45. Wieczorek, W., Florjanczyk, Z. & Stevens, R. Composite polyether based solid electrolytes. Electrochim. Acta 40, 2251–2258 (1995).

    CAS  Google Scholar 

  46. Kasemägi, H., Aabloo, A., Klintenberg, M. K. & Thomas, J. O. Molecular dynamics simulation of the effect of nanoparticle fillers on ion motion in a polymer host. Solid State Ionics 168, 249–254 (2004).

    Google Scholar 

  47. Maier, J. & Lauer, U. Ionic contact equilibria in solids — implications for batteries and sensors. Ber. Bunsenges. Phys. Chem. 94, 973–978 (1990).

    CAS  Google Scholar 

  48. Maier, J. Space charge regions in solid two phase systems and their conduction contribution. II. Contact equilibrium at the interphase of two ionic conductors and the related conductivity effect. Ber. Bunsenges. Phys. Chem. 89, 355–362 (1985).

    CAS  Google Scholar 

  49. Shahi, K. & Wagner, J. B. Fast ion transport in silver halide solid solutions and multiphase systems. Appl. Phys. Lett. 37, 757–759 (1980).

    CAS  Google Scholar 

  50. Sata, N., Eberman, K., Eberl, K. & Maier, J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408, 946–949 (2000).

    CAS  Google Scholar 

  51. Jin-Phillipp, N. Y. et al. Structures of BaF2-CaF2 heterolayers and their influences on ionic conductivity. J. Chem. Phys. 120, 2375–2381 (2004).

    CAS  Google Scholar 

  52. Petuskey, W. Interfacial effects on Ag:S nonstoichiometry in silver sulfide/alumina composites. Solid State Ionics 21, 117–129 (1986).

    CAS  Google Scholar 

  53. Beaulieu, L. Y., Larcher, D., Dunlap, R. A. & Dahn, J. R. Reaction of Li with grain-boundary atoms in nanostructured compounds. J. Electrochem. Soc. 147, 3206–3212 (2000).

    CAS  Google Scholar 

  54. Brankovic, S. R., Wang, J. X. & Adžić, R. R. A. Pt submomolayers on Ru nanoparticles. a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem. Solid-State Lett. 4, A217–A220 (2001).

    CAS  Google Scholar 

  55. Simkovich, G. & Wagner, C. The role of ionic point defects in the catalytic activity of ionic crystals. J. Catal. 1, 521–525 (1962).

    CAS  Google Scholar 

  56. Maier, J. & Murugaraj, P. The effect of heterogeneous doping on heterogeneous catalysis: Dehydrohalogenation of tertiary butyl chloride. Solid State Ionics 40/41, 1017–1020 (1990).

    Google Scholar 

  57. Lipowsky, R. in Springer Proceedings in Physics Vol. 50 (eds Falicov, L. M., Mejia-Lira, F. & Morán-López, J. L.) 158–166 (Springer, Berlin, 1990).

    Google Scholar 

  58. Hainovsky, N. & Maier, J. Simple phenomenological approach to premelting and sublattice melting in Frenkel disordered ionic crystals. Phys. Rev. B 51, 15789–15797 (1995).

    CAS  Google Scholar 

  59. Sata, N., Eberman, K., Eberl, K. & Maier, J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408, 946–949 (2000).

    CAS  Google Scholar 

  60. Guo, Y.-G., Lee, J.-S. & Maier, J. AgI nanoplates with mesoscopic superionic conductivity at room temperature. Adv. Mater. (in the press).

  61. Balaya, P., Jamnik, J. & Maier, J. Mesoscopic size effects in nanocrystalline SrTiO3 . Appl. Phys. Lett. (submitted).

  62. Heifets, E., Kotomin, E. A. & Maier, J. Semi-empirical simulations of surface relaxation for perovskite titanates. Surf. Sci. 462, 19–35 (2000).

    CAS  Google Scholar 

  63. Buffat, P. & Borel, J.-P. Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287–2298 (1976).

    CAS  Google Scholar 

  64. Knauth, P., Schwitzgebel, G., Tschöpe, A. & Villain, S. Emf measurements on nanocrystalline copper-doped ceria. J. Solid State Chem. 140, 295–299 (1998).

    CAS  Google Scholar 

  65. Schroeder, A. et al. Excess free enthalpy of nanocrystalline silver, determined in a solid electrolyte cell. Solid State Ionics 173, 95–101 (2004).

    CAS  Google Scholar 

  66. Martin, T. P. In Festkörperprobleme, Advances in Solid State Physics (ed. Grosse, P.) 1–24 (Vieweg, Braunschweig, 1984).

    Google Scholar 

  67. Adams, S., Hariharan, K. & Maier, J. Interface effect on the silver ion conductivity during the crystallization of AgI-Ag2O-V2O5 glasses. Solid State Ionics 75, 193–201 (1995).

    CAS  Google Scholar 

  68. Maier, J. Composite electrolytes. Mater. Chem. Phys. 17, 485–498 (1987).

    CAS  Google Scholar 

  69. Trifonova, A. et al. Influence of the reductive preparation conditions on the morphology and on the electrochemical performance of Sn/SnSb. Solid State Ionics 168, 51–59 (2004).

    CAS  Google Scholar 

  70. Beevers, C. A. & Ross, M. A. S. The crystal structure of 'beta alumina' Na2O.11Al2O3 . Z. Krist. 97, 59–66 (1937).

    CAS  Google Scholar 

  71. Philips, J. C. Physics of High-Tc Superconductors (Academic, Boston, 1983).

    Google Scholar 

  72. Simon, A. Clusters of valence electron poor metals — structure, bonding and properties. Angew. Chem. Int. Edn Engl. 27, 159–183 (1988).

    Google Scholar 

  73. Maier, J. Nanoionics and soft materials science. In Nanocrystalline Metals and Oxides. Selected Properties and Applications (eds Knauth, P. & Schoonman, J.) 81–110 (Electronic Materials: Science & Technology Vol. 7, Kluwer Academic, Boston, Massachusetts, 2002).

    Google Scholar 

  74. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition-metal oxides as negative electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    CAS  Google Scholar 

  75. Li, H., Richter, G. & Maier, J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736–739 (2003).

    CAS  Google Scholar 

  76. Badway, F., Cosandey, F., Pereira, N. & Amatucci, G. G. Carbon metal fluoride nanocomposites. high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318–A1327 (2003).

    CAS  Google Scholar 

  77. Balaya, P., Li, H., Kienle, L. & Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 13, 621–625 (2003).

    CAS  Google Scholar 

  78. Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

    CAS  Google Scholar 

  79. Bhattacharyya, A. J., Dollé, M. & Maier, J. Improved Li-battery electrolytes by heterogeneous doping of nonaqueous Li-salt solutions. Electrochem. Solid-State Lett. 7, A432–A434 (2004).

    CAS  Google Scholar 

  80. Kreuer, K.-D., Paddison, S. J., Spohr, E. & Schuster, M. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004).

    CAS  Google Scholar 

  81. Schuster, M. F. H. & Meyer, W. H. Anhydrous proton conducting polymer. Annu. Rev. Mater. Res. 33, 232–261 (2003).

    Google Scholar 

  82. Zhou, Y. P., Feng, K., Sun, Y. & Zhou, L. A brief review on the study of hydrogen storage in terms of carbon nanotubes. Progr. Chem. 15, 345–350 (2003).

    CAS  Google Scholar 

  83. Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    CAS  Google Scholar 

  84. Ma, R. Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity. Appl. Phys. Lett. 81, 5225–5227 (2002).

    CAS  Google Scholar 

  85. Jamnik, J., Kamp, B., Merkle, R. & Maier, J. Space charge influenced oxygen incorporation in oxides: in how far does it contribute to the drift of Taguchi sensors? Solid State Ionics 150, 157–166 (2002).

    CAS  Google Scholar 

  86. Barsan, N. & Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceramics 7, 143–167 (2001).

    CAS  Google Scholar 

  87. Pan, X. Q., Fu, L. & Dominguez, J. E. Structure-property relationship of nanocrystalline tin dioxide thin films grown on sapphire. J. Appl. Phys. 89, 6056–6061 (2001).

    CAS  Google Scholar 

  88. Maier, J. Electrical sensing of complex gaseous species by making use of acid-base properties. Solid State Ionics 62, 105–111 (1993).

    CAS  Google Scholar 

  89. Holzinger, M., Fleig, J., Maier, J. & Sitte, W. Chemical sensors for acid-base-active gases: Applications to C O2 and NH3 . Ber. Bunsenges. Phys. Chem. 99, 1427–1432 (1995).

    CAS  Google Scholar 

  90. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Google Scholar 

  91. Maier, J. Ionic and mixed conductors for electrochemical devices. Radiation Effects Defects Solids 158, 1–10 (2003).

    CAS  Google Scholar 

  92. Maier, J. in Modern Aspects of Electrochemistry Vol. 38 (eds Conway, B. E., Vayenas, C. G. & White, R. E.) 1–173 (Springer, New York, 2003).

    Google Scholar 

  93. Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 (2002).

    CAS  Google Scholar 

  94. Kreuer, K.-D., Dippel, T., Meyer, W. & Maier, J. in Solid State Ionics III (eds Nazri, G.-A., Tarascon, J.-M. & Armand, M.) 273–282 (Mat. Res. Soc. Symp. Proc. Vol. 293, Materials Research Society, Pittsburgh, PA, 1993).

    Google Scholar 

  95. Eikerling, M., Kornyshev, A. A., Kuznetsov, A. M., Ulstrup, J. & Walbran, S. Mechanisms of proton conductance in polymer electrolyte membranes. J. Phys. Chem. B 105, 3646–3662.

  96. Voet, B. & Voet, J. G. Biochemistry (Wiley, New York, 1995).

    Google Scholar 

  97. Borg, R. J. & Dienes, G. J. The Physical Chemistry of Solids (Academic, San Diego, 1992).

    Google Scholar 

  98. Chandra, A. & Maier, J. Properties and morphology of highly conducting inorganic solid-liquid composites based on AgCl. Solid State Ionics 145, 153–158 (2002).

    Google Scholar 

  99. Maier, J. Point-defect thermodynamics and size effects. Solid State Ionics 131, 13–22 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

The author is indebted to the Max Planck Society and acknowledges support in the framework of the ENERCHEM project.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems. Nature Mater 4, 805–815 (2005). https://doi.org/10.1038/nmat1513

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing