Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flexible active-matrix displays and shift registers based on solution-processed organic transistors

Abstract

At present, flexible displays are an important focus of research1,2,3. Further development of large, flexible displays requires a cost-effective manufacturing process for the active-matrix backplane, which contains one transistor per pixel. One way to further reduce costs is to integrate (part of) the display drive circuitry, such as row shift registers, directly on the display substrate. Here, we demonstrate flexible active-matrix monochrome electrophoretic displays based on solution-processed organic transistors on 25-μm-thick polyimide substrates. The displays can be bent to a radius of 1 cm without significant loss in performance. Using the same process flow we prepared row shift registers. With 1,888 transistors, these are the largest organic integrated circuits reported to date. More importantly, the operating frequency of 5 kHz is sufficiently high to allow integration with the display operating at video speed. This work therefore represents a major step towards 'system-on-plastic'.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device geometry of a solution-processed pentacene transistor and its electrical characteristics.
Figure 2: Active-matrix display driven by solution-processed pentacene transistors.
Figure 3: Characteristics of organics-based 32-stage shift registers.

Similar content being viewed by others

References

  1. Young, N.D. et al. Thin film transistor and diode addressed AMLCDs on polymer substrates. J. SID 5/3, 275–281 (1997).

    Google Scholar 

  2. Gustafsson, G. et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature 357, 477–479 (1992).

    Article  CAS  Google Scholar 

  3. Chen, Y. et al. Flexible active-matrix electronic ink display. Nature 423, 136 (2003).

    Article  CAS  Google Scholar 

  4. Voss, D. Cheap and cheerful circuits. Nature 407, 442–444 (2000).

    Article  CAS  Google Scholar 

  5. Brown, A.R., Pomp, A. Hart, C.M. & De Leeuw, D.M. Logic gates made from polymer transistors and their use in ring oscillators. Science 270, 972–974 (1995).

    Article  CAS  Google Scholar 

  6. Kane, M.G. et al. Analog and digital circuits using organic thin-film transistors on polyester substrates. IEEE Electr. Dev. Lett. 21, 534–536 (2000).

    Article  CAS  Google Scholar 

  7. Crone, B. et al. Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521–523 (2000).

    Article  CAS  Google Scholar 

  8. Drury, C.J., Mutsaers, C.M.J., Hart, C.M., Matters M. & De Leeuw D.M. Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73, 108–110 (1998).

    Article  CAS  Google Scholar 

  9. Gelinck, G.H., Geuns, T.C.T. & De Leeuw, D.M. High-performance all-polymer integrated circuits. Appl. Phys. Lett. 77, 1487–1489 (2000).

    Article  CAS  Google Scholar 

  10. Touwslager, F.J., Willard, N.P. & De Leeuw, D.M. I-line lithography of poly-(3,4-ethylenedioxythiophene) electrodes and application in all-polymer integrated circuits. Appl. Phys. Lett. 81, 4556–4558 (2002).

    Article  CAS  Google Scholar 

  11. Sirringhaus, H., Tessler, N. & Friend, R.H. Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998).

    Article  CAS  Google Scholar 

  12. Dodabalapur, A. et al. Organic smart pixels. Appl. Phys. Lett. 73, 142–144 (1998).

    Article  CAS  Google Scholar 

  13. Rogers, J.A. et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl Acad. Sci. USA 98, 4835–4840 (2001).

    Article  CAS  Google Scholar 

  14. Mach, P., Rodriquez, S.J., Nortrup, R., Wiltzius, P. & Rogers, J.A. Monolithically integrated flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors. Appl. Phys. Lett. 78, 3592–3594 (2001).

    Article  CAS  Google Scholar 

  15. Kane, M.G. et al. AMLCDs using organic thin-film transistors on polyester substrates. SID Digest 57–59 (2001).

  16. Dimitrakopoulos, C.D. & Malenfant, P.R.L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  17. Huitema, H.E.A. et al. Plastic transistors in active-matrix displays. Nature 414, 599 (2001).

    Article  CAS  Google Scholar 

  18. Sirringhaus H. et al. Active matrix displays made with printed polymer thin film transistors. SID Digest 1084–1086 (2003).

  19. Huitema, H.E.A. et al. Plastic transistors used as pixel switches in AMLCD. J. SID 10/3, 195–202 (2002).

    Google Scholar 

  20. Brown, A.R., Jarrett, C.P., De Leeuw, D.M. & Matters, M. Field-effect transistors made from solution-processed organic semiconductors. Synth. Met. 88, 37–55 (1997).

    Article  CAS  Google Scholar 

  21. Meijer, E.J. et al. Switch-on voltage in disordered organic field-effect transistors. Appl. Phys. Lett. 80, 3838–3840 (2002).

    Article  CAS  Google Scholar 

  22. Zilker, S.J., Detcheverry, C., Cantatore, E. & De Leeuw, D.M. Bias stress in organic thin-film transistors and logic gates. Appl. Phys. Lett. 79, 1124–1126 (2001).

    Article  CAS  Google Scholar 

  23. Knipp, D., Street, R.A., Völkel, A. & Ho, J. Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties and electronic transport. J. Appl. Phys. 93, 347–355 (2003).

    Article  CAS  Google Scholar 

  24. Salleo, A. & Street, R.A. Light induced bias stress reversal in polyfluorene thin-film transistors. J. Appl. Phys. 94, 471–479 (2003).

    Article  CAS  Google Scholar 

  25. Qiu, Y. et al. H2O effect on the stability of organic thin-film field-effect transistors. Appl. Phys. Lett. 83, 1644–1646 (2003).

    Article  CAS  Google Scholar 

  26. Comiskey, B., Albert, J.D., Yoshizawa, H. & Jacobsen, J. An electrophoretic ink for all-printed reflective electronic displays. Nature 394, 253–255 (1998).

    Article  CAS  Google Scholar 

  27. Fix, W. et al. in Proc. 23rd European Solid-State Device Research Conference (eds Baccarani, G., Gnani, E. & Rudan, M.) 527–529 (Univ. Bologna, Firenze, Italy, 2002).

    Book  Google Scholar 

  28. Klauk, H., Halik, M., Zschieschang, U., Schmid, G. & Radlik, W. Polymer gate dielectric pentacene TFTs and circuits on flexible substrates. IEDM Technical Digest 557–560 (2002).

  29. Herwig, P.T. & Müllen, K. A soluble pentacene precursor: synthesis, solid-state conversion into pentacene and application in a field-effect transistor. Adv. Mater. 11, 480–483 (1999).

    Article  CAS  Google Scholar 

  30. Kymissis, I., Dimtrakopolous, C.D. & Purushothaman, S. Patterning pentacene organic thin film transistors. J. Vac. Sci. Technol. B 20, 956–959 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E ink Corporation, Cambridge, Massachusetts, USA for supplying electrophoretic (E ink) frontpanel laminates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerwin H. Gelinck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelinck, G., Huitema, H., van Veenendaal, E. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nature Mater 3, 106–110 (2004). https://doi.org/10.1038/nmat1061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1061

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing