Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel approaches to polymer blends based on polymer nanoparticles

Abstract

Polymer layers can exhibit significantly improved performances if they possess a multicomponent phase-separated morphology. We present two approaches to control the dimensions of phase separation in thin polymer-blend layers; both rely on polymer nanospheres prepared by the miniemulsion process. In the first approach, heterophase solid layers are prepared from an aqueous dispersion containing nanoparticles of two polymers, whereas in the second approach, both polymers are already contained in each individual nanoparticle. In both cases, the upper limit for the dimension of phase separation is determined by the size of the individual nanoparticles, which can be adjusted down to a few tens of nanometres. We also show that the efficiencies of solar cells using two-component particles are comparable to those of devices prepared from solution at comparable illumination conditions, and that they are not affected by the choice of solvent used in the miniemulsion process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Preparation of a dispersion of solid polymer nanoparticles in water.
Figure 2: Morphology and energy transfer in layers of nanoparticle blends.
Figure 3: Thermal stability of the nanoscale phase-separation in layers of nanoparticle blends.
Figure 4: Energy transfer in two-component blend particles.
Figure 5: Solar cells based on two-component polymer nanoparticles.

Similar content being viewed by others

References

  1. Halls, J.J.M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 ( 1995).

    Article  CAS  Google Scholar 

  2. Yu, G., Gao, J., Hummelen, J.C., Wudl, F. & Heeger, A.J. Polymer photovoltaic cells — enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 ( 1995).

    Article  CAS  Google Scholar 

  3. Brabec, C.J., Sariciftci, N.S. & Hummelen, J.C. Plastic solar cells. Adv. Funct. Mater. 11, 15–26 ( 2001).

    Article  CAS  Google Scholar 

  4. Jones, R.A.L., Norton, L.J., Kramer, E.J., Bates, F.S. & Wiltzius, P. Surface-directed spinodal decomposition. Phys. Rev. Lett. 66, 1326–1329 ( 1991).

    Article  CAS  Google Scholar 

  5. Böltau, M., Walheim, S., Mlynek, J., Krausch, G. & Steiner, U. Surface-induced structure formation of polymer blends on patterned substrates. Nature 391, 877–879 ( 1998).

    Article  Google Scholar 

  6. Krausch, G. Surface-induced self-assembly in thin polymer films. Mater. Sci. Eng. R 14, 1–94 ( 1995).

    Article  Google Scholar 

  7. Walheim, S., Böltau, M., Mlynek, J., Krausch, G. & Steiner, U. Structure formation via polymer demixing in spin-cast films. Macromolecules 30, 4995–5003 ( 1997).

    Article  CAS  Google Scholar 

  8. Müller-Buschbaum, P., Gutmann, J.S. & Stamm, M. Influence of blend composition on phase separation and dewetting of thin polymer blend films. Macromolecules 33, 4886–4895 ( 2000).

    Article  Google Scholar 

  9. Halls, J.J.M. et al. Photodiodes based on polyfluorene composites: Influence of morphology. Adv. Mater. 12, 498–502 ( 2000).

    Article  CAS  Google Scholar 

  10. Shaheen, S.E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 ( 2001).

    Article  CAS  Google Scholar 

  11. Hamley, I.W. The Physics of Copolymers (Oxford Univ. Press, New York, 1998).

  12. Binder, K. in Polymers in Confined Environments (ed. Granick, S.) 1–89 (Advances in Polymer Science Series 138, Springer, Berlin, 1999).

    Book  Google Scholar 

  13. Schmitt, C., Nothofer, H.-G., Falcou, A. & Scherf, U. Conjugated polyfluorene/polyaniline block copolymers. Macromol. Rapid. Commun. 22, 624–628 ( 2001).

    Article  CAS  Google Scholar 

  14. Johansson, D.M., Theander, M., Granlund, T., Inganäs, O. & Anderson, M.R. Synthesis and characterization of polyfluorenes with light-emitting segments. Macromolecules 34, 1981–1986 ( 2001).

    Article  CAS  Google Scholar 

  15. Macosko, C.W. et al. Compatibilizers for melt blending: Premade block copolymers. Macromolecules 29, 5590–5598 ( 1996).

    Article  CAS  Google Scholar 

  16. Hillmyer, M.A., Maurer, W.W., Lodge, T.P., Bates, F.S. & Almdal, K. Polymeric co-continuous microemulsions in ternary homopolymer/block copolmer blends. J. Phys. Chem. B 103, 4814–4824 ( 1999).

    Article  CAS  Google Scholar 

  17. Pernot, H., Baumert, M., Court, F. & Leibler, L. Design and properties of co-continuous nanostructured polymers by reactive blending. Nature Mater. 1, 54–58 ( 2002).

    Article  CAS  Google Scholar 

  18. Landfester, K. et al. Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. Adv. Mater. 14, 651–655 ( 2002).

    Article  CAS  Google Scholar 

  19. Piok, T. et al. Organic light-emitting devices fabricated from semiconducting nanospheres. Adv. Mater. (in the press).

  20. Yan, M., Rothberg, L.J., Papadimitrakopoulos, F., Galvin, M.E. & Miller, T.M. Defect quenching of conjugated polymer luminescence. Phys. Rev. Lett. 73, 744–747 ( 1994).

    Article  CAS  Google Scholar 

  21. Bliznyuk, V.N. et al. Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices. Macromolecules 32, 361–369 ( 1999).

    Article  CAS  Google Scholar 

  22. Grell, M., Bradley, D.D.C., Ungar, G., Hill, J. & Whitehead, K.S. Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 32, 5810–5817 ( 1999).

    Article  CAS  Google Scholar 

  23. Scherf, U. & Müllen, K. Polyarylenes and poly(arylenevinylenes). 7. A soluble ladder polymer via bridging of functionalized poly(para-phenylene)-precursors. Macromol. Chem. Rapid Commun. 12, 489–497 ( 1991).

    Article  CAS  Google Scholar 

  24. Scherf, U. & List, E.J.W. Semiconducting polyfluorenes: Towards reliable structure-property relationships. Adv. Mater. 14, 477–487 ( 2002).

    Article  CAS  Google Scholar 

  25. Zhao, Y., Levesque, J., Roberge, P.C. & Prudhomme, R.E. A study of polymer blends by nonradiative energy-transfer fluorescence spectroscopy. J. Polym. Sci. Polym. Phys. 27, 1955–1970 ( 1989).

    Article  CAS  Google Scholar 

  26. Jiang, M., Chen, W.J. & Yu, T.Y. Controllable specific interactions and miscibility in polymer blends. 3. Nonradiative energy-transfer fluorescence studies. Polymer 32, 984–989 ( 1991).

    Article  CAS  Google Scholar 

  27. Arias, A.C. et al. Photovoltaic performance and morphology of polyfluorene blends: A combined microscopic and photovoltaic investigation. Macromolecules 34, 6005–6013 ( 2001).

    Article  CAS  Google Scholar 

  28. Snaith, H.J., Arias, A.C., Morteani, A.C., Silva, C. & Friend, R.H. Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices. Nanoletters 2, 1353–1357 ( 2002).

    Article  CAS  Google Scholar 

  29. Winnik, M.A. Latex film formation. Curr. Opin. Colloid Interface Sci. 2, 192–199 ( 1997).

    Article  CAS  Google Scholar 

  30. Blackley, D.C. Polymer Latices (Chapman & Hall, London, 1997).

  31. Patel, A.A., Feng, J.R., Winnik, M.A., Vancso, G.J. & McBain, C.B.D. Characterization of latex blend films by atomic force microscopy. Polymer 37, 5577–5582 ( 1996).

    Article  CAS  Google Scholar 

  32. Feng, J.R., Winnik, M.A., Shivers, R.R. & Clubb, B. Polymer blend latex films — morphology and transparency. Macromolecules 28, 7671–7682 ( 1995).

    Article  CAS  Google Scholar 

  33. Landfester, K. Polyreactions in miniemulsions. Macromol. Rapid Commun. 22, 896–936 ( 2001).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank W. Regenstein (University of Potsdam) for the access to the optical spectrometers used in this work, A. Heilig (MPI of Colloids and Interfaces) for performing the AFM measurements and M. Förster (University of Wuppertal) for experimental support in the polymer synthesis. We also acknowledge financial support by the Stiftung Volkswagenwerk and the Max-Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dieter Neher, Katharina Landfester or Ullrich Scherf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kietzke, T., Neher, D., Landfester, K. et al. Novel approaches to polymer blends based on polymer nanoparticles. Nature Mater 2, 408–412 (2003). https://doi.org/10.1038/nmat889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing