Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functionalized silicon membranes for selective bio-organism capture

Abstract

Membranes with various pore size, length, morphology and density have been synthesized from diverse materials1,2,3,4,5 for size-exclusion-based separation. An example is the sterilization of intravenous lines by exclusion of bacteria and viruses using polyvinylidene fluoride membranes with 0.1-μm-diameter pores. Chemically specific filtration has recently been addressed for small molecules6,7,8,9,10. Nevertheless, specific bio-organism immobilization and detection remains a great technical challenge in many biomedical applications, such as decontamination or analysis of air and liquids such as drinking water and body fluids. To achieve this goal, materials with controlled pore diameter, length and surface chemistry are required. In this letter, we present the first functionalized silicon membranes and demonstrate their ability to selectively capture simulated bio-organisms. These extremely versatile and rigid devices open the door to a new class of materials that are able to recognize the external fingerprints of bio-organisms—such as size and outer membrane proteins—for specific capture and detection applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pre-patterned silicon sample.
Figure 2: Silicon membranes.
Figure 3: Selective capture of simulated bio-organisms.

Similar content being viewed by others

References

  1. Idris, A., Ismail, A.F., Noordin, M.Y. & Shilton, S.J. Optimization of cellulose acetate hollow fiber reverse osmosis membrane production using Taguchi method. J. Membrane Sci. 205, 223– 237 ( 2002).

    Article  CAS  Google Scholar 

  2. Martin, C.R. Nanomaterials: a membrane-based synthetic approach. Science 266, 1961– 1966 ( 1994).

    Article  CAS  Google Scholar 

  3. Jirage, K.B., Hulteen, J.C. & Martin, C.R. Nanotube-based molecular-filtration membranes. Science 278, 655– 658 ( 1997).

    Article  CAS  Google Scholar 

  4. Desai, T.A., Hansford, D. & Ferrari, M. Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J. Membrane Sci. 159, 221– 231 ( 1999).

    Article  CAS  Google Scholar 

  5. Leoni, L., Boiarski, A. & Desai, T.A. Characterization of nanoporous membranes for immunoisolation: diffusion properties and tissue effects. Biomed. Microdevices 4, 131– 139 ( 2002).

    Article  Google Scholar 

  6. Jirage, K.B., Hulteen, J.C. & Martin, C.R. Effects of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal. Chem. 71, 4913– 4918 ( 1999).

    Article  CAS  Google Scholar 

  7. Bok Lee, S. & Martin, C.R. Controlling the transport properties of gold nanotubule membranes using chemisorbed thiols. Chem. Mater. 13, 3236– 3244 ( 2001).

    Article  Google Scholar 

  8. Lee, S.B. et al. Antibody-based bio-nanotube membranes for enantiomeric drug separation. Science 296, 2198– 2200 ( 2002).

    Article  CAS  Google Scholar 

  9. Fernandez-Lopez, S. et al. Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature 412, 452– 455 ( 2001).

    Article  CAS  Google Scholar 

  10. Chun, K.-Y. & Stroeve, P. Protein transport in nanoporous membranes modified with self assembled monolayers of functionalized thiols. Langmuir 18, 4653– 4658 ( 2002).

    Article  CAS  Google Scholar 

  11. Lehmann, V. & Foll, H. Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J. Electrochem. Soc. 137, 653– 659 ( 1990).

    Article  CAS  Google Scholar 

  12. Birner, A., Wehrspohn, R.B., Gosele, U.M. & Busch, K. Silicon-based photonic crystals. Adv. Mater. 13, 377– 388 ( 2001).

    Article  CAS  Google Scholar 

  13. Lehmann, V., Stengl, R., Reisinger, H., Detemple, R. & Theiss, W. Optical shortpass filters based on macroporous silicon. Appl. Phys. Lett. 78, 589– 591 ( 2001).

    Article  CAS  Google Scholar 

  14. Loncar, M., Doll, T., Vuckovic, J. & Scherer, A. Design and fabrication of silicon photonic crystal optical waveguides. J. Lightwave Technol. 18, 1402– 1411 ( 2000).

    Article  CAS  Google Scholar 

  15. Lehmann, V. Barcoded molecules. Nature Mater. 1, 12– 13 ( 2002).

    Article  CAS  Google Scholar 

  16. Buriak, J.M. Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102, 1271– 1308 ( 2002).

    Article  CAS  Google Scholar 

  17. Dancil, K.-P.S., Greiner, D.P. & Sailor, M.J. A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface. J. Am. Chem. Soc. 121, 7925– 7930 ( 1999).

    Article  CAS  Google Scholar 

  18. Buriak, J.M. & Allen, M.J. Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J. Am. Chem. Soc. 120, 1339– 1340 ( 1998).

    Article  CAS  Google Scholar 

  19. Stewart, M.P. & Buriak, J.M. Exciton-mediated hydrosilylation on photoluminescent nanocrystalline silicon. J. Am. Chem. Soc. 123, 7821– 7830 ( 2001).

    Article  CAS  Google Scholar 

  20. Boukherroub, R. et al. Ideal passivation of luminescent porous silicon by thermal, noncatalytic reaction with alkenes and aldehydes. Chem. Mater. 13, 2002– 2011 ( 2001).

    Article  CAS  Google Scholar 

  21. Canham, L.T. et al. Derivatized mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv. Mater. 11, 1505– 1507 ( 1999).

    Article  CAS  Google Scholar 

  22. Hart, B.R. et al. New method for attachment of biomolecules to porous silicon. Chem. Comm. 3, 322– 323 ( 2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48. It was funded by a Laboratory Directed Research and Development grant (LDRD-ER # 00-ERD-009). The authors are very grateful to John G. Reynolds for the considerable amount of advice that he provided for the design of the chemical linker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia E. Létant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Membrane functionalization method

Figure 1 Physical and optical properties of dyed polystyrene micro-beads used in this study. (PDF 150 kb)

Figure 2 Permeation of silicon membranes by dyed polystyrene microbeads.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Létant, S., Hart, B., van Buuren, A. et al. Functionalized silicon membranes for selective bio-organism capture. Nature Mater 2, 391–395 (2003). https://doi.org/10.1038/nmat888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing