Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surface-initiated self-healing of polymers in aqueous media

Abstract

Polymeric materials that intrinsically heal at damage sites under wet or moist conditions are urgently needed for biomedical and environmental applications1,2,3,4,5,6. Although hydrogels with self-mending properties have been engineered by means of mussel-inspired metal-chelating catechol-functionalized polymer networks7,8,9,10, biological self-healing in wet conditions, as occurs in self-assembled holdfast proteins in mussels and other marine organisms11,12, is generally thought to involve more than reversible metal chelates. Here we demonstrate self-mending in metal-free water of synthetic polyacrylate and polymethacrylate materials that are surface-functionalized with mussel-inspired catechols. Wet self-mending of scission in these polymers is initiated and accelerated by hydrogen bonding between interfacial catechol moieties, and consolidated by the recruitment of other non-covalent interactions contributed by subsurface moieties. The repaired and pristine samples show similar mechanical properties, suggesting that the triggering of complete self-healing is enabled underwater by the formation of extensive catechol-mediated interfacial hydrogen bonds.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the steps entailed in polymer-rod healing studies.
Figure 2: NEXAFS spectra of catechol-functionalized polymer samples at incident radiation angles ranging from 30° to 120°.
Figure 3: Cohesive interactions between polymer films functionalized with exposed and blocked catechols as measured by the surface forces apparatus.
Figure 4: Adhesion force between various polymeric surfaces with a contact time of 5 s and 250 mN of applied load.

Similar content being viewed by others

References

  1. White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

    Article  CAS  Google Scholar 

  2. Ghosh, B. & Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323, 1458–1460 (2009).

    Article  CAS  Google Scholar 

  3. Chen, X. X. et al. A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1702 (2002).

    Article  CAS  Google Scholar 

  4. Cordier, P., Tournilhac, F., Soulie-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    Article  CAS  Google Scholar 

  5. Dailey, M. M. et al. A self-healing biomaterial based on free-radical polymerization. J. Biomed. Mater. Res. http://dx.doi.org/10.1002/jbm.a.34975 (2013).

  6. Boger, A., Heini, P., Windolf, M. & Schneider, E. Adjacent vertebral failure after vertebroplasty: A biomechanical study of low-modulus PMMA cement. Eur. Spine J. 16, 2118–2125 (2007).

    Article  Google Scholar 

  7. Holten-Andersen, N. et al. pH-induced metal–ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl Acad. Sci. USA 108, 2651–2655 (2011).

    Article  CAS  Google Scholar 

  8. Krogsgaard, M., Behrens, M. A., Pedersen, J. S. & Birkedal, H. Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14, 297–301 (2013).

    Article  CAS  Google Scholar 

  9. Shafiq, Z. et al. Bioinspired underwater bonding and debonding on demand. Angew. Chem. Int. Ed. 51, 4332–4335 (2012).

    Article  CAS  Google Scholar 

  10. Zeng, H., Hwang, D. S., Israelachvili, J. N. & Waite, J. H. Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proc. Natl Acad. Sci. USA 107, 12850–12853 (2010).

    Article  CAS  Google Scholar 

  11. Holten-Andersen, N., Fantner, G. E., Hohlbauch, S., Waite, J. H. & Zok, F. W. Protective coatings on extensible biofibres. Nature Mater. 6, 669–672 (2007).

    Article  CAS  Google Scholar 

  12. Carrington, E. & Gosline, J. M. Mechanical design of mussel byssus: Load cycle and strain rate dependence. Am. Malacol. Bull. 18, 135–142 (2004).

    Google Scholar 

  13. Yu, J. et al. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nature Chem. Biol. 7, 588–590 (2011).

    Article  CAS  Google Scholar 

  14. Heo, J. et al. Improved performance of protected catecholic polysiloxanes for bioinspired wet adhesion to surface oxides. J. Am. Chem. Soc. 134, 20139–20145 (2012).

    Article  CAS  Google Scholar 

  15. Menyo, M. S., Hawker, C. J. & Waite, J. H. Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. Soft Matter. 9, 10314–10323 (2013).

    Article  CAS  Google Scholar 

  16. Sedó, J., Saiz-Poseu, J., Busqué, F. & Ruiz-Molina, D. Catechol-based biomimetic functional materials. Adv. Mater. 25, 653–701 (2013).

    Article  Google Scholar 

  17. Belman, N., Jin, K. J., Golan, Y., Israelachvili, J. N. & Pesika, N. S. Origin of the contact angle hysteresis of water on chemisorbed and physisorbed self-assembled monolayers. Langmuir 28, 14609–14617 (2012).

    Article  CAS  Google Scholar 

  18. Eslami, M., Zare, H. R. & Namazian, M. Thermodynamic parameters of electrochemical oxidation of L-DOPA: Experimental and theoretical studies. J. Phys. Chem. B 116, 12552–12557 (2012).

    Article  CAS  Google Scholar 

  19. Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. in Annual Review of Materials Research Vol. 41 (eds Clarke, D. R. & Fratzl, P.) 99–132 (Annual Reviews: Palo Alto, 2011).

    Google Scholar 

  20. Yu, J. et al. Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. Proc. Natl Acad. Sci. USA 110, 15680–15685 (2013).

    Article  CAS  Google Scholar 

  21. Zhang, J. et al. Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013).

    Article  CAS  Google Scholar 

  22. Aviram, A., Seiden, P. E. & Ratner, M. A. in Molecular Electronic Devices (ed. Carter, F. L.) 5–17 (Marcel Dekker, 1983).

    Google Scholar 

  23. Tylli, H. & Konschin, H. A Raman spectroscopic study of the OH and OD torsion in 1,2-dihydroxybenzene. J. Mol. Struct. 57, 13–19 (1979).

    Article  CAS  Google Scholar 

  24. Navarrete, J. T. L. & Ramírez, F. J. A study by Raman spectroscopy and the semiempirical AM1 method on several 1,2-dihydroxybenzene solutions. Spectrochim. Acta A 49, 1759–1767 (1993).

    Article  Google Scholar 

  25. Hemraj-Benny, T. et al. Near-edge X-ray absorption fine structure spectroscopy as a tool for investigating nanomaterials. Small 2, 26–35 (2006).

    Article  CAS  Google Scholar 

  26. Park, J. et al. Structural characterization of conjugated polyelectrolyte electron transport layers by NEXAFS spectroscopy. Adv. Mater. 20, 2491–2496 (2008).

    Article  CAS  Google Scholar 

  27. Lee, D. W., Lim, C., Israelachvili, J. N. & Hwang, D. S. Strong adhesion and cohesion of chitosan in aqueous solutions. Langmuir 29, 14222–14229 (2013).

    Article  CAS  Google Scholar 

  28. Anderson, T. H. et al. The contribution of DOPA to substrate–peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films. Adv. Funct. Mater. 20, 4196–4205 (2010).

    Article  CAS  Google Scholar 

  29. Danner, E. W., Kan, Y. J., Hammer, M. U., Israelachvili, J. N. & Waite, J. H. Adhesion of mussel foot protein Mefp-5 to mica: An underwater superglue. Biochemistry 51, 6511–6518 (2012).

    Article  CAS  Google Scholar 

  30. Wang, J. et al. Influence of binding-site density in wet bioadhesion. Adv. Mater. 20, 3872–3876 (2008).

    Article  CAS  Google Scholar 

  31. Ahn, B. K., Kraft, S. & Sun, X. S. Chemical pathways of epoxidized and hydroxylated fatty acid methyl esters and triglycerides with phosphoric acid. J. Mater. Chem. 21, 9498–9505 (2011).

    Article  Google Scholar 

  32. Ahn, B. K., Kraft, S., Wang, D. & Sun, X. S. Thermally stable, transparent, pressure-sensitive adhesives from epoxidized and dihydroxyl soybean oil. Biomacromolecules 12, 1839–1843 (2011).

    Article  CAS  Google Scholar 

  33. Bunker, S. P. & Wool, R. P. Synthesis and characterization of monomers and polymers for adhesives from methyl oleate. J. Polym. Sci. Polym. Chem. 40, 451–458 (2002).

    Article  CAS  Google Scholar 

  34. Israelachvili, J. et al. Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys. 73, 036601 (2010).

    Article  Google Scholar 

  35. Lee, D. W., Banquy, X. & Israelachvili, J. N. Stick–slip friction and wear of articular joints. Proc. Natl Acad. Sci. USA 110, E567–E574 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Office of Naval Research N000141310867, the United Soybean Board, the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the US Army Research Office (the content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred), the National Science Foundation MRSEC DMR-1121053, and the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences under Award DE-FG02-87ER-45331 (J.N.I. for the instrument modification of the Surface Forces Apparatus for the adhesion measurements and D.W.L. for the adhesion measurements). The authors also acknowledge assistance from T. Mates for XPS, Y. Li for XRR, and L. Perez for NEXAFS and GIWAXS.

Author information

Authors and Affiliations

Authors

Contributions

B.K.A. and D.W.L designed the research, performed the experiments, and wrote the paper. J.N.I. advised the experimental design of the modified SFA and experimental measurements, and the interpretation of results. J.H.W. supervised the overall experimental design and writing.

Corresponding authors

Correspondence to Jacob N. Israelachvili or J. Herbert Waite.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary file (PDF 1358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, B., Lee, D., Israelachvili, J. et al. Surface-initiated self-healing of polymers in aqueous media. Nature Mater 13, 867–872 (2014). https://doi.org/10.1038/nmat4037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4037

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing