Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering of light confinement in strongly scattering disordered media

Abstract

Disordered photonic materials can diffuse and localize light through random multiple scattering, offering opportunities to study mesoscopic phenomena, control light–matter interactions, and provide new strategies for photonic applications. Light transport in such media is governed by photonic modes characterized by resonances with finite spectral width and spatial extent. Considerable steps have been made recently towards control over the transport using wavefront shaping techniques. The selective engineering of individual modes, however, has been addressed only theoretically. Here, we experimentally demonstrate the possibility to engineer the confinement and the mutual interaction of modes in a two-dimensional disordered photonic structure. The strong light confinement is achieved at the fabrication stage by an optimization of the structure, and an accurate and local tuning of the mode resonance frequencies is achieved via post-fabrication processes. To show the versatility of our technique, we selectively control the detuning between overlapping localized modes and observe both frequency crossing and anti-crossing behaviours, thereby paving the way for the creation of open transmission channels in strongly scattering media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Near-field imaging of localized modes.
Figure 2: Statistical distributions of the PL intensity.
Figure 3: Decay lengths of localized modes.
Figure 4: Reversible spectral tuning of localized modes.
Figure 5: Local engineering of localized modes.

Similar content being viewed by others

References

  1. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

    Google Scholar 

  2. Akahane, Y., Asano, T., Song, B. S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  CAS  Google Scholar 

  3. Yanik, M. F. & Fan, S. Stopping light all optically. Phys. Rev. Lett. 92, 083901 (2004).

    Article  Google Scholar 

  4. Tran, N. V., Combrié, S. & De Rossi, A. Directive emission from high-Q photonic crystal cavities through band folding. Phys. Rev. B 79, 041101(R) (2009).

    Article  Google Scholar 

  5. Strudley, T., Zehender, T., Blejean, C., Bakkers, E. P. A. M. & Muskens, O. Mesoscopic light transport by very strong collective multiple scattering in nanowire mats. Nature Photon. 7, 413–418 (2013).

    Article  CAS  Google Scholar 

  6. Payne, B., Yamilov, A. & Skipetrov, S. E. Anderson localization as position-dependent diffusion in disordered waveguides. Phys. Rev B. 82, 024205 (2010).

    Article  Google Scholar 

  7. Sapienza, L. et al. Cavity quantum electrodynamics with Anderson-localized modes. Science 327, 1352–1355 (2010).

    Article  CAS  Google Scholar 

  8. Noh, H. et al. Control of lasing in biomimetic structures with short range order. Phys. Rev Lett. 106, 183901 (2011).

    Article  Google Scholar 

  9. Vynck, K., Burresi, M., Riboli, F. & Wiersma, D. S. Photon management in two-dimensional disordered media. Nature Mater. 11, 1017–1022 (2012).

    Article  CAS  Google Scholar 

  10. Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

    Article  CAS  Google Scholar 

  11. Redding, B., Liew, S. F., Sarma, R. & Cao, H. Compact spectrometer based on a disordered photonic chip. Nature Photon. 7, 746–751 (2013).

    Article  CAS  Google Scholar 

  12. Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena 2nd edn (Springer, 2010).

    Google Scholar 

  13. Ching, E. S. C. et al. Quasinormal-mode expansion for waves in open systems. Rev. Mod. Phys. 70, 1545–1554 (1998).

    Article  Google Scholar 

  14. Genack, A. Z. & Zhang, S. in Tutorials in Complex Photonic Media (eds Noginov, M. A.et al.) (SPIE Publications, 2009).

    Google Scholar 

  15. Popoff, S. M. et al. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Article  CAS  Google Scholar 

  16. Mosk, A., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    Article  CAS  Google Scholar 

  17. Leonetti, M., Conti, C. & Lopez, C. Switching and amplification in disordered lasing resonators. Nature Commun. 4, 1740 (2013).

    Article  Google Scholar 

  18. Bachelard, B., Andreasen, J., Gigan, S. & Sebbah, P. Taming random lasers through active spatial control of the pump. Phys. Rev. Lett. 109, 033903 (2012).

    Article  CAS  Google Scholar 

  19. Labonté, L., Vanneste, C. & Sebbah, P. Localized mode hybridization by fine tuning of two-dimensional random media. Opt. Lett. 37, 1946–1948 (2012).

    Article  Google Scholar 

  20. Vanneste, C. & Sebbah, P. Complexity of two-dimensional quasimodes at the transition from weak scattering to Anderson localization. Phys. Rev. A. 79, 041802(R) (2009).

    Article  Google Scholar 

  21. Riboli, F. et al. Anderson localization of near-visible light in two dimensions. Opt. Lett. 36, 127–129 (2011).

    Article  CAS  Google Scholar 

  22. Intonti, F. et al. Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation. Appl. Phys. Lett. 100, 033116 (2012).

    Article  Google Scholar 

  23. Pendry, J. B. Quasi-extended electron states in strongly disordered systems. J. Phys. C 20, 733–742 (1987).

    Article  CAS  Google Scholar 

  24. Mirlin, A. D. Statistic of energy levels and eigenfunctions in disordered systems. Phys. Rep. 326, 259 (2000).

    Article  CAS  Google Scholar 

  25. Van Tiggelen, B. A. & Skipetrov, S. E. Fluctuations of local density of states and C0 speckle correlations are equal. Phys. Rev. E 73, 045601(R) (2006).

    Article  Google Scholar 

  26. Cazé, A., Pierrat, R. & Carminati, R. Near-field interactions and nonuniversality in speckle patterns produced by a point source in a disordered medium. Phys. Rev. A 82, 043823 (2010).

    Article  Google Scholar 

  27. Sapienza, R. et al. Long-tail statistics of the Purcell factor in disordered media by near field interaction. Phys. Rev. Lett. 106, 163902 (2011).

    Article  CAS  Google Scholar 

  28. Birowosuto, M. D., Skipetrov, S. E., Vos, W. L. & Mosk, A. P. Observation of spatial fluctuations of the local density of states in random photonic media. Phys. Rev. Lett. 105, 013904 (2010).

    Article  CAS  Google Scholar 

  29. Garcia, P. D., Stobbe, S., Sollner, I. & Lodahl, P. Nonuniversality intensity correlations in a two-dimensional Anderson-localizing random medium. Phys. Rev. Lett. 109, 253902 (2012).

    Article  Google Scholar 

  30. Nieuwenhuizen, Th. M. & van Rossum, M. C. W. Intensity distributions of waves transmitted through a multiple scattering medium. Phys. Rev. Lett. 74, 2674–2677 (1995).

    Article  CAS  Google Scholar 

  31. Laurent, D., Legrand, O., Sebbah, P., Vanneste, C. & Mortessagne, F. Localized modes in a finite-size open disordered microwave cavity. Phys. Rev. Lett. 99, 253902 (2007).

    Article  Google Scholar 

  32. Berman, P. R. (ed.) Cavity Quantum Electrodynamics (Academic, 1994).

    Google Scholar 

  33. Koenderink, A. F., Kafesaki, M., Buchker, B., C. & Sandoghdar, V. Controlling the resonance of a photonic crystal microcavity by near-field probe. Phys. Rev. Lett. 95, 153904 (2005).

    Article  Google Scholar 

  34. Intonti, F. et al. Spectral tuning and near-field imaging of photonic crystal microcavities. Phys. Rev. B 78, 041401(R) (2008).

    Article  Google Scholar 

  35. Spasenovic, M., Beggs, D. M., Lalanne, P., Krauss, T. F. & Kuipers, L. Measuring the spatial extent of individual localized photonic states. Phys. Rev. B 86, 155153 (2012).

    Article  Google Scholar 

  36. Intonti, F. et al. Nanofluidic control of coupled photonic crystal resonator. Appl. Phys. Lett. 96, 141114 (2010).

    Article  Google Scholar 

  37. Bertolotti, J., Gottardo, S., Wiersma, D. S., Ghulinyan, M. & Pavesi, L. Optical necklace states in Anderson localized 1D systems. Phys. Rev. Lett. 94, 113903 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge M. Burresi for discussions and for critically reading the manuscript, and F. Pratesi and G. M. Conley for discussions. This work is financially supported by the Eu NoE Nanophotonics for Energy Efficiency, the ERC through the Advanced Grant PhotBots and ENI S.p.A.

Author information

Authors and Affiliations

Authors

Contributions

F.R. designed and engineered the samples; M.G. conceived the post-fabrication tuning of random modes; N.C., F.I., F.R. and S.V. performed the experiments; F.R. and N.C. performed the data analysis with help from M.G., K.V., F.I., P.B. and D.S.W.; A.G., L.L., L.B. and A.F. fabricated the samples; F.R. and M.G. wrote the paper with support from K.V., F.I. and N.C., with appraisals and inputs from D.S.W.; F.R., K.V., P.B., D.S.W. and M.G. contributed to the theoretical analysis. All authors contributed to the general discussion.

Corresponding author

Correspondence to Francesco Riboli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riboli, F., Caselli, N., Vignolini, S. et al. Engineering of light confinement in strongly scattering disordered media. Nature Mater 13, 720–725 (2014). https://doi.org/10.1038/nmat3966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3966

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing