Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anomalous independence of interface superconductivity from carrier density

Abstract

The recent discovery of superconductivity at the interface of two non-superconducting materials has received much attention1,2,3,4,5,6,7,8,9,10,11,12. In cuprate bilayers, the critical temperature (Tc) can be significantly enhanced compared with single-phase samples2,7,9. Several explanations have been proposed, invoking Sr interdiffusion2, accumulation and depletion of mobile charge carriers2,8,10, elongation of the copper-to-apical-oxygen bond length11,12, or a beneficial crosstalk between a material with a high pairing energy and another with a large phase stiffness13,14,15,16. From each of these models, one would predict Tc to depend strongly on the carrier density in the constituent materials. Here, we study combinatorial libraries of La2−xSrxCuO4–La2CuO4 bilayer samples—an unprecedentedly large set of more than 800 different compositions. The doping level x spans a wide range, 0.15 < x < 0.47, and the measured Hall coefficient varies by one order of magnitude. Nevertheless, across the entire sample set, Tc stays essentially constant at about 40 K. We infer that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. This result poses a new challenge to theory—cuprate superconductors have not run out of surprises.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bilayer heterostructure, calculated charge distribution and expected Tc evolution.
Figure 2: The doping dependence of resistivity (ρ) and Hall coefficient (RH) in La2−xSrxCuO4–La2CuO4 bilayer films.
Figure 3: Combinatorial transport measurements.
Figure 4: The doping dependence of Tc in La2−xSrxCuO4–La2CuO4 bilayer films.

Similar content being viewed by others

References

  1. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  CAS  Google Scholar 

  2. Gozar, A. et al. High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782–785 (2008).

    Article  CAS  Google Scholar 

  3. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  Google Scholar 

  4. Bell, C. et al. Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 103, 226802 (2009).

    Article  CAS  Google Scholar 

  5. Kozuka, Y. et al. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462, 487–490 (2009).

    Article  CAS  Google Scholar 

  6. Biscaras, J. et al. Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3 . Nature Commun. 1, 89 (2010).

    Article  CAS  Google Scholar 

  7. Logvenov, G., Gozar, A. & Bozovic, I. High-temperature superconductivity in a single copper-oxygen plane. Science 326, 699–702 (2009).

    Article  CAS  Google Scholar 

  8. Smadici, S. et al. Superconducting transition at 38 K in insulating-overdoped La2CuO4–La1.64Sr0.36CuO4 superlattices: Evidence for interface electronic redistribution from resonant soft X-ray scattering. Phys. Rev. Lett. 102, 107004 (2009).

    Article  CAS  Google Scholar 

  9. Koren, G. & Millo, O. Enhancement of the superconducting transition temperature of La2−xSrxCuO4 and La1.875Ba0.125CuO4 bilayers: Bilayer and reference film prepared on the same wafer. Phys. Rev. B 81, 134516 (2010).

    Article  Google Scholar 

  10. Loktev, V. M. & Pogorelov, Yu. G. Model for modulated electronic configurations in selectively doped multilayered La2CuO4 nanostructures. Phys. Rev. B 78, 180501(R) (2008).

    Article  Google Scholar 

  11. Butko, V. Y. et al. Madelung strain in cuprate superconductors—a route to enhancement of the critical temperature. Adv. Mater. 21, 3644–3648 (2009).

    Article  CAS  Google Scholar 

  12. Bergman, D. L. & Pereg-Barnea, T. The origin of Tc enhancement in heterostructure cuprate superconductors. Materials 4, 1835–1845 (2011).

    Article  CAS  Google Scholar 

  13. Kivelson, S. A. Making high Tc higher: A theoretical proposal. Physica B 318, 61–67 (2002).

    Article  CAS  Google Scholar 

  14. Berg, E., Orgad, D. & Kivelson, S. A. Route to high-temperature superconductivity in composite systems. Phys. Rev. B 78, 094509 (2008).

    Article  Google Scholar 

  15. Goren, L. & Altman, E. Enhancement of the superconducting transition temperature in cuprate heterostructures. Phys. Rev. B 79, 174509 (2009).

    Article  Google Scholar 

  16. Okamoto, S. & Maier, T. A. Enhanced superconductivity in superlattices of high-Tc cuprates. Phys. Rev. Lett. 101, 156401 (2008).

    Article  Google Scholar 

  17. Radaelli, P. G. et al. Structural and superconducting properties of La2−xSrxCuO4 as a function of Sr content. Phys. Rev. B 49, 4163–4175 (1994).

    Article  CAS  Google Scholar 

  18. Takagi, H. et al. Systematic evolution of temperature-dependent resistivity in La2−xSrxCuO4 . Phys. Rev. Lett. 69, 2975–2978 (1992).

    Article  CAS  Google Scholar 

  19. Ando, Y., Komiya, S., Segawa, K., Ono, S. & Kurita, Y. Electronic phase diagram of high-Tc cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. Lett. 93, 267001 (2004).

    Article  Google Scholar 

  20. Sato, H., Tsukada, A., Naito, M. & Matsuda, A. La2−xSrxCuOy epitaxial thin films (x = 0 to 2): Structure, strain, and superconductivity. Phys. Rev. B 61, 12447–12456 (2000).

    Article  CAS  Google Scholar 

  21. Ong, N. P. et al. Hall effect of La2−xSrxCuO4: Implications for the electronic structure in the normal state. Phys. Rev. B 35, 8807–8810 (1987).

    Article  CAS  Google Scholar 

  22. Hwang, H. Y. et al. Scaling of the temperature dependent Hall effect in La2−xSrxCuO4 . Phys. Rev. Lett. 72, 2636–2639 (1994).

    Article  CAS  Google Scholar 

  23. Ando, Y., Kurita, Y., Komiya, S., Ono, S. & Segawa, K. Evolution of the Hall coefficient and the peculiar electronic structure of the cuprate superconductors. Phys. Rev. Lett. 92, 197001 (2004).

    Article  Google Scholar 

  24. Balakirev, F. F. et al. Quantum phase transition in the magnetic-field-induced normal state of optimum-doped high-Tc cuprate superconductors at low temperatures. Phys. Rev. Lett. 102, 017004 (2009).

    Article  CAS  Google Scholar 

  25. Bozovic, I. Atomic-layer engineering of superconducting oxides: yesterday, today, tomorrow. IEEE Trans. Appl. Supercond. 11, 2686–2695 (2001).

    Article  Google Scholar 

  26. Clayhold, J. A. et al. Combinatorial measurements of Hall effect and resistivity in oxide films. Rev. Sci. Instr. 79, 033908 (2008).

    Article  CAS  Google Scholar 

  27. Clayhold, J. A. et al. Statistical characterization and process control for improved growth of La2−xSrxCuO4 films. J. Supercond. Nov. Magn. 22, 797–804 (2009).

    Article  CAS  Google Scholar 

  28. Ino, A. et al. Chemical potential shift in overdoped and underdoped La2−xSrxCuO4 . Phys. Rev. Lett. 79, 2101–2104 (1997).

    Article  CAS  Google Scholar 

  29. Hussey, N. E., Abdel-Jawad, M., Carrington, A., Mackenzie, A. P. & Balicas, L. A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor. Nature 425, 814–817 (2003).

    Article  CAS  Google Scholar 

  30. Bozovic, I. et al. No mixing of superconductivity and anti-ferromagnetism in a high-critical-temperature superconductor. Nature 422, 873–875 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Gozar, J. A. Clayhold and R. Sundling for valuable technical help at early stages of this work. Research supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. National High Magnetic Field Laboratory is supported by the US National Science Foundation award DMR-1157490. Z.R. and M.V. also acknowledge Project No.171027 of the Serbian Ministry of Science and Education

Author information

Authors and Affiliations

Authors

Contributions

The experiment was devised by I.B. The films were synthesized and characterized by I.B., G.L. and Y-J.S., and patterned by A.T.B. The transport measurements were done by O.P. and J.W, and theoretical modeling by M.V. and Z.R. All authors contributed to the analysis and the manuscript.

Corresponding author

Correspondence to I. Božović.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1742 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Pelleg, O., Logvenov, G. et al. Anomalous independence of interface superconductivity from carrier density. Nature Mater 12, 877–881 (2013). https://doi.org/10.1038/nmat3719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3719

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing