Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efomycine M, a new specific inhibitor of selectin, impairs leukocyte adhesion and alleviates cutaneous inflammation

An Erratum to this article was published on 01 June 2002

Abstract

Specific interference with molecular mechanisms guiding tissue localization of leukocytes may be of great utility for selective immunosuppressive therapies. We have discovered and characterized efomycines, a new family of selective small-molecule inhibitors of selectin functions. Members of this family significantly inhibited leukocyte adhesion in vitro. Efomycine M, which was nontoxic and showed the most selective inhibitory effects on selectin-mediated leukocyte-endothelial adhesion in vitro, significantly diminished rolling in mouse ear venules in vivo as seen by intravital microscopy. In addition, efomycine M alleviated cutaneous inflammation in two complementary mouse models of psoriasis, one of the most common chronic inflammatory skin disorders. Molecular modeling demonstrated a spatial conformation of efomycines mimicking naturally occurring selectin ligands. Efomycine M might be efficacious in the treatment of human inflammatory disorders through a similar mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efomycines inhibit selectin-mediated functions in vitro.
Figure 2
Figure 3: Efomycine M inhibits selectin-mediated leukocyte rolling in vivo.
Figure 4: Low in vitro toxicity and low in vivo plasma clearance of efomycine M.
Figure 5: Efomycine M effectively alleviates hyperproliferative inflammatory skin lesions in a T cell–mediated mouse model of psoriasis.
Figure 6: NMR-based molecular modeling shows similar three-dimensional structures of efomycine M and sialyl LewisX.

Similar content being viewed by others

References

  1. Nickoloff, B.J. The cytokine network of psoriasis. Arch. Dermatol. 127, 871–884 (1991).

    Article  CAS  Google Scholar 

  2. Schön, M.P. & Ruzicka, T. Psoriasis: The plot thickens... Nature Immunol. 2, 91 (2001).

    Article  Google Scholar 

  3. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  4. Springer, T. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  5. Varki, A. Selectin ligands. Proc. Natl. Acad. Sci. USA 91, 7390–7397 (1994).

    Article  CAS  Google Scholar 

  6. Picker, L.J., Kishimoto, T., Smith, C.W., Warnock, R.A. & Butcher, E.C. ELAM-1 is an adhesion molecule for skin-homing T cells. Nature 349, 796–799 (1991).

    Article  CAS  Google Scholar 

  7. Todderud, G. et al. BMS-190394, a selectin inhibitor, prevents rat cutaneous inflammatory reactions. J. Pharmacol. Exp. Ther. 282, 1298–1304 (1997).

    CAS  PubMed  Google Scholar 

  8. Boehncke, W.H., Sterry, W., Hainzl, A., Scheffold, W. & Kaufmann, R. Psoriasiform architecture of murine epidermis overlying human psoriatic dermis transplanted onto scid mice. Arch. Dermatol. Res. 286, 325–330 (1994).

    Article  CAS  Google Scholar 

  9. Nickoloff, B.J., Kunkel, S.L., Burdick, M. & Strieter, R.M. Severe combined immunodeficiency mouse and human psoriatic skin chimeras. Validation of a new animal model. Am. J. Pathol. 146, 580–588 (1995).

    CAS  PubMed  Google Scholar 

  10. Schön, M.P., Detmar, M. & Parker, C.M. Murine psoriasis-like disorder induced by naive CD4+ T cells. Nature Med. 3, 183–188 (1997).

    Article  Google Scholar 

  11. Larsen, E. et al. PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15). Cell 63, 467–474 (1990).

    Article  CAS  Google Scholar 

  12. Weninger, W. et al. Specialized contributions by α(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity 12, 665–676 (2000).

    Article  CAS  Google Scholar 

  13. Robert, C. et al. Interaction of dendritic cells with skin endothelium: A new perspective on immunosurveillance. J. Exp. Med. 189, 627–236 (1999).

    Article  CAS  Google Scholar 

  14. Christophers, E. The immunopathology of psoriasis. Int. Arch. Allergy Immunol. 110, 199–206 (1996).

    Article  CAS  Google Scholar 

  15. Boehncke, W.-H., Dressel, D., Zollner, T.M. & Kaufmann, R. Pulling the trigger on psoriasis. Nature 379, 777 (1996).

    Article  CAS  Google Scholar 

  16. Wrone-Smith, T. & Nickoloff, B.J. Dermal injection of immunocytes induces psoriasis. J. Clin. Invest. 98, 1878–1887 (1996).

    Article  CAS  Google Scholar 

  17. Nickoloff, B.J. The immunologic and genetic basis of psoriasis. Arch. Dermatol. 135, 1104–1110 (1999).

    CAS  PubMed  Google Scholar 

  18. Schröder, J.M., Gregory, H., Young, J. & Christophers, E. Neutrophil-activating proteins in psoriasis. J. Invest. Dermatol. 98, 241–247 (1992).

    Article  Google Scholar 

  19. Schön, M.P. Animal models of psoriasis—what can we learn from them? J. Invest. Dermatol. 112, 405–410 (1999).

    Article  Google Scholar 

  20. Morrissey, P.J., Charrier, K., Braddy, S., Liggitt, D. & Watson, J.D. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J. Exp. Med. 178, 237–244 (1993).

    Article  CAS  Google Scholar 

  21. Powrie, F., Leach, M.W., Mauze, S., Caddle, L.B. & Coffman, R.L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C.B-17 scid mice. Int. Immunol. 5, 1461–1471 (1993).

    Article  CAS  Google Scholar 

  22. Schön, M., Denzer, D., Kubitza, R., Ruzicka, T. & Schön, M.P. Critical role of neutrophils for the generation of psoriasiform skin lesions in Flaky Skin mice. J. Invest. Dermatol. 114, 976–983 (2000).

    Article  Google Scholar 

  23. Miller, K.E., Mukhopadhyay, C., Cagas, P. & Bush, C.A. Solution structure of the Lewis x oligosaccharide determined by NMR spectroscopy and molecular dynamics simulations. Biochemistry 31, 6703–6709 (1992).

    Article  CAS  Google Scholar 

  24. Boehncke, W.H., Kock, M., Hardt-Weinelt, K., Wolter, M. & Kaufmann, R. The SCID-hu xenogeneic transplantation model allows screening of anti-psoriatic drugs. Arch. Dermatol. Res. 291, 104–106 (1999).

    Article  CAS  Google Scholar 

  25. Dam, T.M., Kang, S., Nickoloff, B.J. & Voorhees, J.J. 1a,25-dihydroxycholecalciferol and cyclosporine suppress induction and promote resolution of psoriasis in human skin grafts transplanted onto SCID mice. J. Invest. Dermatol. 113, 1082–1089 (1999).

    Article  CAS  Google Scholar 

  26. Schön, M.P., Homey, B. & Ruzicka, T. Antiphlogistics. Dermocorticoids and topical immunomodulators. in Dermatopharmacology of Topical Preparations. A Product Development-Oriented Approach (eds. Gabard, B., Elsner, P., Surber, C. & Treffel, P.) 179–190 (Springer, Berlin, 2000).

    Chapter  Google Scholar 

  27. Gottlieb, J.L. et al. Response of psoriasis to a lymphocyte-selective toxin (DAB389 IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nature Med. 1, 442–447 (1995).

    Article  CAS  Google Scholar 

  28. Falke, P., Elneihoum, A.M. & Ohlsson, K. Leukocyte activation: Relation to cardiovascular mortality after cerebrovascular ischemia. Cerebrovasc. Dis. 10, 97–101 (2000).

    Article  CAS  Google Scholar 

  29. Barros, L.F.M., Coelho, I.J., Petrini, C.A., Chagas, A.C.P. & Silva, M.R.E. Myocardial reperfusion: Leukocyte accumulation in the ischemic and remote non-ischemic regions. Shock 13, 67–71 (2000).

    Article  CAS  Google Scholar 

  30. Salmi, M. & Jalkanen, S. Endothelial ligands and homing of mucosal leukocytes in extraintestinal manifestations of IBD. Inflamm. Bowel Dis. 4, 149–156 (1998).

    Article  CAS  Google Scholar 

  31. Goodarzi, M.T. et al. Sialyl Lewis(x) expression on IgG in rheumatoid arthritis and other arthritic conditions: A preliminary study. Glycoconj. J. 15, 1149–1154 (1998).

    Article  CAS  Google Scholar 

  32. Srivastava, D. & Thompson, E.B. Two glucocorticoid binding sites on the human glucocorticoid receptor. Endocrinology 127, 1770–1778 (1990).

    Article  CAS  Google Scholar 

  33. Peters, D.H., Fitton, A., Plosker, G.L. & Faulds, D. Tacrolimus. A review of its pharmacology and therapeutic potential in hepatic and renal transplantation. Drugs 46, 746–794 (1993).

    Article  CAS  Google Scholar 

  34. Abraham, R.T. & Wiederrecht, G.J. Immunopharmacology of rapamycin. Annu. Rev. Immunol. 14, 483–510 (1996).

    Article  CAS  Google Scholar 

  35. Schreiber, S.L. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 253, 283–287 (1991).

    Article  Google Scholar 

  36. Schreiber, S.L. & Crabtree, G.R. The mechanism of action of cyclosporin A and FK506. Immunol. Today 13, 136–142 (1992).

    Article  CAS  Google Scholar 

  37. Sigal, N.H. & Dumont, F.J. Cyclosporine A, FK506 and rapamycin: Pharmacological probes of lymphocyte signal transduction. Annu. Rev. Immunol. 10, 519–525 (1992).

    Article  CAS  Google Scholar 

  38. Bierer, B.E. et al. Two distinct signal transduction pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc. Natl. Acad. Sci. USA 87, 9231–9235 (1990).

    Article  CAS  Google Scholar 

  39. Liu, J. et al. Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  Google Scholar 

  40. Smith, C.H., Barker, J.N.W.N., Morris, R.W., MacDonald, D.M. & Lee, T.H. Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J. Immunol. 151, 3274–3282 (1993).

    CAS  PubMed  Google Scholar 

  41. Bonfanti, R., Furie, B.C., Furie, B. & Wagner, D.D. PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood 73, 1109–1112 (1989).

    CAS  PubMed  Google Scholar 

  42. Bevilacqua, M.P., Stengelin, S., Gimbrone, M.A.J. & Seed, B. Endothelial leukocyte adhesion molecule-1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243, 1160–1163 (1989).

    Article  CAS  Google Scholar 

  43. Hamann, P., Kretzschmar, G. & Seibert, G. Secondary metabolites by chemical screening 7.I. Elaiophylin derivatives and their biological activities. J. Antibiot. 43, 1431–1440 (1990).

    Article  Google Scholar 

  44. Detmar, M., Tenorio, S., Hettmannsperger, U., Ruszczak, Z. & Orfanos, C.E. Cytokine regulation of proliferation and ICAM-1 expression of human dermal microvascular endothelial cells in vitro. J. Invest. Dermatol. 98, 147–153 (1992).

    Article  CAS  Google Scholar 

  45. Picker, L.J. et al. Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte-associated antigen, a tissue-selective homing receptor for skin-homing T cells. J. Immunol. 150, 1122–1136 (1993).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Kubitza, J. Herz, and K. Hardt-Weinelt for technical assistance; I. Kruse, I. Hagelschuer and M. Kock for help with animal care; O. Gutbrod and D. Gondol for help with analysis of three-dimensional molecular structures; M. Kazinski for help with cell sorting; and T. Henkel and K. Weber for compound synthesis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael P. Schön or W.-Henning Boehncke.

Ethics declarations

Competing interests

T.K. has taken over a patent on the use of efomycines. However, there is no financial gain or benefit foreseeable and no financial profit has been made.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, M., Krahn, T., Schön, M. et al. Efomycine M, a new specific inhibitor of selectin, impairs leukocyte adhesion and alleviates cutaneous inflammation. Nat Med 8, 366–372 (2002). https://doi.org/10.1038/nm0402-366

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0402-366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing