Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in schizophrenia

Abstract

Recent studies into the etiology of schizophrenia have yielded both promising leads and disappointing dead ends, indicating the multifactored and complex nature of the disorder. The focus has subsequently shifted back to refining the phenotype and identifying clinical and biological subtypes. Recent technological breakthroughs in genomics and proteomics hold promise for advancing our understanding of the molecular pathophysiology of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Statistical parametric maps derived from 150-labeled water positron emission tomography scans obtained when nondeficit schizophrenic patients (n = 10) were contrasted to deficit patients (n = 8).

Similar content being viewed by others

References

  1. Kraepelin, E. Dementia Praecox and Paraphrenia. (Huntington, New York, 1919).

  2. Bleuler, M. Demential Praecox or the Group of Schizophrenias. (International Universities Press, New York, 1950).

    Google Scholar 

  3. Abi-Dargham, A. et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am. J. Psychiatry 155, 761–767 (1998).

    Article  CAS  Google Scholar 

  4. Breier, A. et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method. Proc. Natl. Acad. Sci. USA 94, 2569–2574 (1997).

    Article  CAS  Google Scholar 

  5. Tamminga, C.A. Schizophrenia and glutamatergic transmission. Crit. Rev. Neurobiol. 12, 21–36 (1998).

    Article  CAS  Google Scholar 

  6. Smiley, J.F., Levey, A.I., Ciliax, B.J. & Goldman-Rakic, P.S. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc. Natl. Acad. Sci. USA 91, 5720–5724 (1994).

    Article  CAS  Google Scholar 

  7. Bergson, C. et al. Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J. Neurosci. 15, 7821–7836 (1995).

    Article  CAS  Google Scholar 

  8. Otani, S., Auclair, N., Desce, J.M., Roisin, M.P. & Crepel, F. Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. J. Neurosci. 19, 9788–9802 (1999).

    Article  CAS  Google Scholar 

  9. Seamans, J.K., Durstewitz, D., Christie, B.R., Stevens, C.F. & Sejnowski, T.J. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc. Natl. Acad. Sci. USA 98, 301–306 (2001).

    Article  CAS  Google Scholar 

  10. Gao, W.J., Krimer, L.S. & Goldman-Rakic, P.S. Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc. Natl. Acad. Sci. USA 98, 295–300 (2001).

    Article  CAS  Google Scholar 

  11. Benes, F.M. Emerging principles of altered neural circuitry in schizophrenia. Brain Res. Brain Res. Rev. 31, 251–269 (2000).

    Article  CAS  Google Scholar 

  12. Bogerts, B. The neuropathology of schizophrenic diseases: historical aspects and present knowledge. Eur. Arch. Psychiatry Clin. Neurosci. 249 (Suppl. 4), 2–13 (1999).

    Article  Google Scholar 

  13. Sanfilipo, M. et al. Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch. Gen. Psychiatry 57, 471–480 (2000).

    Article  CAS  Google Scholar 

  14. Selemon, L.D. & Goldman-Rakic, P.S. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol. Psychiatry 45, 17–25 (1999).

    Article  CAS  Google Scholar 

  15. Glantz, L.A. & Lewis, D.A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57, 65–73 (2000).

    Article  CAS  Google Scholar 

  16. Lidow, M.S. et al. Antipsychotic treatment induces alterations in dendrite- and spine-associated proteins in dopamine-rich areas of the primate cerebral cortex. Biol. Psychiatry 49, 1–12 (2001).

    Article  CAS  Google Scholar 

  17. Mirnics, K., Middleton, F.A., Marquez, A., Lewis, D.A. & Levitt, P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53–67 (2000).

    Article  CAS  Google Scholar 

  18. Mednick, S.A., Machon, R.A., Huttunen, M.O. & Bonett, D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiatry 45, 189–192 (1988).

    Article  CAS  Google Scholar 

  19. Karlsson, H. et al. Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc. Natl. Acad. Sci. USA 98, 4634–4639 (2001).

    Article  CAS  Google Scholar 

  20. Kendler, K.S. & Diehl, S.R. Schizophrenia: Genetics. in Comprehensive Textbook of Psychiatry. Vol. VI (eds. Kaplan, H.I. & Sadock, B.J.) 942–957 (Williams and Wilkins, Baltimore, Maryland, 1995).

    Google Scholar 

  21. Cannon, T.D., Kaprio, J., Lonnqvist, J., Huttunen, M. & Koskenvuo, M. The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch. Gen. Psychiatry 55, 67–74 (1998).

    Article  CAS  Google Scholar 

  22. Tsuang, M.T., Stone, W.S. & Faraone, S.V. Schizophrenia: a review of genetic studies. Harv. Rev. Psychiatry 7, 185–207 (1999).

    Article  CAS  Google Scholar 

  23. Pulver, A.E. Search for schizophrenia susceptibility genes. Biol. Psychiatry 47, 221–230 (2000).

    Article  CAS  Google Scholar 

  24. Thaker, G.K. Defining the schizophrenia phenotype. Current Psychiatry Reports 2, 398–403 (2000).

    Article  CAS  Google Scholar 

  25. Carpenter, W.T. Jr, Heinrichs, D.W. & Wagman, A.M. Deficit and nondeficit forms of schizophrenia: The concept. Am. J. Psychiatry 145, 578–583 (1988).

    Article  Google Scholar 

  26. Fenton, W.S. & McGlashan, T.H. Antecedents, symptom progression, and long-term outcome of the deficit syndrome in schizophrenia. Am. J. Psychiatry 151, 351–356 (1994).

    Article  CAS  Google Scholar 

  27. Waltrip, R.W. et al. Borna disease virus antibodies and the deficit syndrome of schizophrenia. Schizophr. Res. 23, 253–257 (1997).

    Article  Google Scholar 

  28. Kirkpatrick, B., Buchanan, R.W., Ross, D.E. & Carpenter, W.T.J. A separate disease within the syndrome of schizophrenia. Arch. Gen. Psychiatry 58, 165–171 (2001).

    Article  CAS  Google Scholar 

  29. Ross, D.E. et al. Sibling correlation of deficit syndrome in the Irish study of high-density schizophrenia families. Am. J. Psychiatry 157, 1071–1076 (2000).

    Article  CAS  Google Scholar 

  30. Tamminga, C.A. et al. Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch. Gen. Psychiatry 49, 522–530 (1992).

    Article  CAS  Google Scholar 

  31. Carpenter, W.T. Jr, Buchanan, R.W., Kirkpatrick, B., Tamminga, C.A. & Wood, F. Strong inference, theory testing, and the neuroanatomy of schizophrenia. Arch. Gen. Psychiatry 50, 825–831 (1993).

    Article  Google Scholar 

  32. Holzman, P.S., Proctor, L.R. & Hughes, D.W. Eye-tracking patterns in schizophrenia. Science 181, 179–181 (1973).

    Article  CAS  Google Scholar 

  33. Arolt, V. et al. Eye tracking dysfunction is a putative phenotypic susceptibility marker of schizophrenia and maps to a locus on chromosome 6p in families with multiple occurrence of the disease. Am. J Med. Genet. 67, 564–579 (1996).

    Article  CAS  Google Scholar 

  34. Cannon, T.D. et al. Neuropsychological functioning in siblings discordant for schizophrenia and healthy volunteers. Arch. Gen. Psychiatry 51, 651–661 (1994).

    Article  CAS  Google Scholar 

  35. Callicott, J.H. et al. Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: a possible intermediate neurobiological phenotype. Biol. Psychiatry 44, 941–950 (1998).

    Article  CAS  Google Scholar 

  36. Freedman, R., Adler, L.E. & Leonard, S. Alternative phenotypes for the complex genetics of schizophrenia. Biol. Psychiatry 45, 551–558 (1999).

    Article  CAS  Google Scholar 

  37. Freedman, R. et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc. Natl. Acad. Sci. USA 94, 587–592 (1997).

    Article  CAS  Google Scholar 

  38. Freedman, R. & Leonard, S. Schizophrenia and 15q14. Am. J. Med. Genet. (in the press).

  39. Carlsson, A. & Lindquist, M. Effect of chlorpromazine and haloperidol of formation of 3- methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. 140–144 (1963).

  40. Kane, J., Honigfeld, G., Singer, J. & Meltzer, H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch. Gen. Psychiatry 45, 789–796 (1988).

    Article  CAS  Google Scholar 

  41. Goff, D.C., Tsai, G., Manoach, D.S. & Coyle, J.T. Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am. J. Psychiatry 152, 1213–1215 (1995).

    Article  CAS  Google Scholar 

  42. Heresco-Levy, U. et al. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch. Gen. Psychiatry 56, 29–36 (1999).

    Article  CAS  Google Scholar 

  43. Mirnics, K., Middleton, F.A., Stanwood, G.D., Lewis, D.A. & Levitt, P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol. Psychiatry, 293–301 (2001).

  44. Brzustowicz, L.M., Hodgkinson, K.A., Chow, E.W., Honer, W.G. & Bassett, A.S. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science 288, 678–682 (2000).

    Article  CAS  Google Scholar 

  45. Sherrington, R. et al. Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature 336, 164–167 (1988).

    Article  CAS  Google Scholar 

  46. Arolt, V. et al. Eye tracking dysfunction is a putative phenotypic susceptibility marker of schizophrenia and maps to a locus on chromosome 6p in families with multiple occurrence of the disease. Am. J. Med. Genet. 67, 564–579 (1996).

    Article  CAS  Google Scholar 

  47. Pulver, A.E. et al. Genetic heterogeneity in schizophrenia: stratification of genome scan data using co-segregating related phenotypes. Mol. Psychiatry 5, 650–653 (2000).

    Article  CAS  Google Scholar 

  48. Detera-Wadleigh, S.D. et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc. Natl. Acad. Sci. USA 96, 5604–5609 (1999).

    Article  CAS  Google Scholar 

  49. Myles-Worsley, M. et al. Linkage of a composite inhibitory phenotype to a chromosome 22q locus in eight Utah families. Am. J. Med. Genet. 88, 544–550 (1999).

    Article  CAS  Google Scholar 

  50. Scambler, P.J. et al. Velo-cardio-facial syndrome associated with chromosome 22 deletions encompassing the DiGeorge locus. Lancet 339, 1138–1139 (1992).

    Article  CAS  Google Scholar 

  51. Kelsoe, J.R. et al. A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc. Natl. Acad. Sci. USA 98, 585–590 (2001).

    Article  CAS  Google Scholar 

  52. Baron, M. Genetics of schizophrenia and the new millennium: progress and pitfalls. Am. J. Hum. Genet. 68, 299–312 (2001).

    Article  CAS  Google Scholar 

  53. Egan, M.F. et al. Effect of COMT val108/158met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA (in the press).

  54. Berrettini, W.H. Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol. Psychiatry 48, 531–538 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support was received from NIH grants MH49826 and 40279 and the W.K. Warren Medical Research Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaker, G., Carpenter, W. Advances in schizophrenia. Nat Med 7, 667–671 (2001). https://doi.org/10.1038/89040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/89040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing