Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28−/− mice

Abstract

Successful transplantation of allogeneic organs is an important objective in modern medicine. However, sophisticated immune defense mechanisms, primarily evolved to combat infections, often work against medical transplantation. To investigate the roles of natural and adaptive immune responses in transplant rejection, we functionally inactivated key effector systems of the innate (NK cells) and the adaptive immune system (CD28-mediated costimulation of T cells) in mice. Neither of these interventions alone led to acceptance of allogeneic vascularized cardiac grafts. In contrast, inhibition of NK-receptor–bearing cells combined with CD28-costimulation blockade established long-term graft acceptance. These results indicate a concerted interplay between innate and adaptive immune surveillance for graft rejection. Thus we suggest that inactivation of NK-receptor–bearing cells could be a new strategy for successful survival of solid-organ transplants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allogenic cardiac grafts are rejected in CD28−/−.
Figure 2: Semi-identical grafts are accepted in CD28−/− hosts.
Figure 3: Reduced cytokine transcription in semi-identical grafts in CD28−/− hosts.
Figure 4: Cellular infiltration into grafted hearts.
Figure 5: Depletion of NK-receptor–bearing cells leads to prolonged survival of allogeneic cardiac grafts in CD28−/− recipients.

Similar content being viewed by others

References

  1. Medzhitov, R. & Janeway, C.A. Jr. An ancient system of host defense. Curr. Opin. Immunol. 10, 12–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Karre, K. & Colonna, M. Specificity, Function, and Development of NK cells. (Springer, London, 1998).

    Book  Google Scholar 

  3. Correa, I. & Raulet, D.H. Binding of diverse peptides to MHC class I molecules inhibits target cell lysis by activated natural killer cells. Immunity 2, 61–71 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Lanier, L.L. The role of natural killer cells in transplantation. Curr. Opin. Immunol. 7, 626–631 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Ljunggren, H.G. & Karre, K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Ortaldo, J.R., Winkler-Pickett, R., Mason, A.T. & Mason, L.H. The Ly-49 family: regulation of cytotoxicity and cytokine production in murine CD3+ cells. J. Immunol. 160, 1158–1165 (1998).

    CAS  PubMed  Google Scholar 

  7. Skold, M. & Cardell, S. Differential regulation of Ly49 expression on CD4+ and CD4-CD8- (double negative) NK1.1+ T cells. Eur. J. Immunol. 30, 2488–2496 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Biron, C.A. & Welsh, R.M. Blastogenesis of natural killer cells during viral infection in vivo. J. Immunol. 129, 2788–2795 (1982).

    CAS  PubMed  Google Scholar 

  9. del Val, M. et al. Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J. Exp. Med. 176, 729–738 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Jones, T.R. et al. Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J. Virol. 69, 4830–4841 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Colonna, M. Specificity and function of immunoglobulin superfamily NK cell inhibitory and stimulatory receptors. Immunol. Rev. 155, 127–133 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Yu, Y.Y., Kumar, V. & Bennett, M. Murine natural killer cells and marrow graft rejection. Annu. Rev. Immunol. 10, 189–213 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Heidecke, C.D. et al. Lack of evidence for an active role for natural killer cells in acute rejection of organ allografts. Transplantation 40, 441–444 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Zinkernagel, R.M. & Doherty, P.C. The discovery of MHC restriction. Immunol. Today 18, 14–17 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Gould, D.S. & Auchincloss, H., Jr. Direct and indirect recognition: the role of MHC antigens in graft rejection. Immunol. Today 20, 77–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Warrens, A.N., Lombardi, G. & Lechler, R.I. Presentation and recognition of major and minor histocompatibility antigens. Transpl. Immunol. 2, 103–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Lafferty, K.J., Prowse, S.J., Simeonovic, C.J. & Warren, H.S. Immunobiology of tissue transplantation: a return to the passenger leukocyte concept. Annu. Rev. Immunol. 1, 143–173 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Abbas, A.K. & Janeway, C.A. Jr. Immunology: improving on nature in the twenty-first century. Cell 100, 129–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz, R.H. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71, 1065–1068 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Boussiotis, V.A., Freeman, G.J., Gribben, J.G. & Nadler, L.M. The role of B7-1/B7-2:CD28/CLTA-4 pathways in the prevention of anergy, induction of productive immunity and down-regulation of the immune response. Immunol. Rev. 153, 5–26 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, J.G. & Jenkins, M.K. Accessory cell-derived signals required for T cell activation. Immunol. Res. 12, 48–64 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Kawai, K., Shahinian, A., Mak, T.W. & Ohashi, P.S. Skin allograft rejection in CD28-deficient mice. Transplantation 61, 352–355 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Szot, G.L. et al. Absence of host B7 expression is sufficient for long-term murine vascularized heart allograft survival. Transplantation 69, 904–909 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Lin, H. et al. Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28. J. Exp. Med. 188, 199–204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klein, J. Immunology. The Science of Self-Nonself Discrimination. 476–479 (John Wiley & Sons, New York, 1982).

    Google Scholar 

  27. Pearson, T.C. et al. Transplantation tolerance induced by CTLA4-Ig. Transplantation 57, 1701–1706 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Razi-Wolf, Z. et al. Expression and function of the murine B7 antigen, the major costimulatory molecule expressed by peritoneal exudate cells. Proc. Natl. Acad. Sci. USA 89, 4210–4214 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Turka, L.A. et al. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc. Natl. Acad. Sci. USA 89, 11102–11105 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hale, D.A., Gottschalk, R., Maki, T. & Monaco, A.P. Use of CTLA4-Ig in combination with conventional immunosuppressive agents to prolong allograft survival. Transplantation 64, 897–900 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Larsen, C.P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y. et al. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nature Med. 5, 1298–1302 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Trambley, J. et al. Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J. Clin. Invest 104, 1715–1722 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dharnidharka, V.R., Schowengerdt, K. & Skoda-Smith, S. Failure of combined costimulatory blockade in animal transplant model. Nature Med. 6, 115 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Honey, K., Cobbold, S.P. & Waldmann, H. CD40 ligand blockade induces CD4+ T cell tolerance and linked suppression. J. Immunol. 163, 4805–4810 (1999).

    CAS  PubMed  Google Scholar 

  36. Newell, K.A. et al. Cutting edge: blockade of the CD28/B7 costimulatory pathway inhibits intestinal allograft rejection mediated by CD4+ but not CD8+ T cells. J. Immunol. 163, 2358–2362 (1999).

    CAS  PubMed  Google Scholar 

  37. Kimachi, K., Croft, M. & Grey, H.M. The minimal number of antigen-major histocompatibility complex class II complexes required for activation of naive and primed T cells. Eur. J. Immunol. 27, 3310–3317 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Reay, P.A. et al. Determination of the relationship between T cell responsiveness and the number of MHC-peptide complexes using specific monoclonal antibodies. J. Immunol. 164, 5626–5634 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Manning, T.C. et al. Antigen recognition and allogeneic tumor rejection in CD8+ TCR transgenic/RAG(−/−) mice. J. Immunol. 159, 4665–4675 (1997).

    CAS  PubMed  Google Scholar 

  40. Shelton, M.W., Walp, L.A., Basler, J.T., Uchiyama, K. & Hanto, D.W. Mediation of skin allograft rejection in scid mice by CD4+ and CD8+ T cells. Transplantation 54, 278–286 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Shi, F.D. et al. Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nature Immunol. 1, 245–251 (2000).

    Article  CAS  Google Scholar 

  42. Li, Y., Zheng, X.X., Li, X.C., Zand, M.S. & Strom, T.B. Combined costimulation blockade plus rapamycin but not cyclosporine produces permanent engraftment. Transplantation 66, 1387–1388 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Karre, K. & Welsh, R.M. Viral decoy vetoes killer cell. Nature 386, 446–447 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Corry, R.J., Winn, H.J. & Russell, P.S. Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation 16, 343–350 (1973).

    Article  CAS  PubMed  Google Scholar 

  45. Endres, R. et al. Listeriosis in p47(phox−/−) and TRp55−/− mice: protection despite absence of ROI and susceptibility despite presence of RNI. Immunity. 7, 419–432 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Mink and U. Huffstatt for technical assistance; Y. Chvatcho and M. Kosco-Vilbois for the antibody against NK1.1; R. Endres, N. Zantl, T. Plitz, and H. Neubauer for helpful discussions; N. Zantl for help with microsurgical techniques; and H. Wagner and J.-R. Siewert for continuous and generous support. Grants for these studies was provided by the DFG (259/2-4 to K.P. and Si208/ 5-1/ SFB576 to K.P. and C.-D.H.). This work forms part of an M.D. thesis of C. Tertilt and N. Chambron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Pfeffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, S., Tertilt, C., Chambron, N. et al. Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28−/− mice. Nat Med 7, 557–562 (2001). https://doi.org/10.1038/87880

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing