Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Subtelomeric chromosome rearrangements are detected using an innovative 12-color FISH assay (M-TEL)

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Combinatorial labeling scheme for the M-TEL assay.
Figure 2: Color classification (goldFISH) analysis of the telomeric signals in metaphases from patient 3.
Figure 3: MacProbe v4.1 analysis of telomeric signals in metaphases from patient 3.
Figure 4: Color classification (goldFISH) analysis of bone-marrow metaphases with trisomy 8 from an AML patient.

References

  1. Zakian, V.A. Telomeres: Beginning to understand the end. Science 270, 1601–1607 (1995).

    CAS  Google Scholar 

  2. Craig, J.M. & Bickmore, W.A. The distribution of CpG islands in mammalian chromosomes. Nature Genet. 7, 376–382 (1994).

    Article  CAS  Google Scholar 

  3. Saccone, S., De Sario, A., Valle, D.G. & Bernardi, G. The highest gene concentration in the human genome are in telomeric bands of metaphase chromosome. Proc. Natl. Acad. Sci. USA 89, 4913–4917 (1992).

    Article  CAS  Google Scholar 

  4. Donis-Keller, H. et al. A genetic linkage of the human genome. Cell 51, 319–337 (1987).

    Article  CAS  Google Scholar 

  5. Raynham, H., Gibbons, R., Flint, J. & Higgs, D. The genetic basis for mental retardation. Quart. J. Med. 89, 169–175 (1996).

    Article  CAS  Google Scholar 

  6. Knight, S.J.L. et al. Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet 354, 1676–1681 (1999).

    Article  CAS  Google Scholar 

  7. Holinski-Feder, E. et al. Familial mental retardation syndrome ATR-16 due to an inherited cryptic subtelomeric translocation, t(3;16)(q29;p13.3). Am. J. Hum. Genet. 66, 16–25 (2000).

    Article  CAS  Google Scholar 

  8. Romana, S.P., Le Coniat, M. & Berger, R. t(12;21): A new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosom. Cancer 9, 186–191 (1994).

    Article  CAS  Google Scholar 

  9. Jaju, R.J. et al. A new recurrent translocation, t(5;11)(q35;p15.5), associated with del(5q) in childhood AML. Blood 94, 773–780 (1999).

    CAS  PubMed  Google Scholar 

  10. Tosi, S. et al. t(7;12)(q36;p13), a new recurrent translocation involving ETV6 in infant leukaemia. Genes Chromosom. Cancer 29, 325–332 (2000).

    Article  CAS  Google Scholar 

  11. Buckle, V.J. & Kearney, L. New methods in cytogenetics. Curr. Opin. Genet. Dev. 4, 374–382 (1994).

    Article  CAS  Google Scholar 

  12. Speicher, M.R., Ballard, S.G. & Ward, D.C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet. 12, 368–375 (1996).

    Article  CAS  Google Scholar 

  13. Schröck, E. et al. Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996).

    Article  Google Scholar 

  14. Uhrig, S. et al. Multiplex-FISH for pre- and postnatal diagnostic applications. Am. J. Hum. Genet. 65, 448–462 (1999).

    Article  CAS  Google Scholar 

  15. Brown, J. et al. The identification of a subtle t(16;19)(p13.3;p13.3) in an infant with multiple congenital abnormalities using a 12-colour multiplex FISH assay, M-TEL. Eur. J. Hum. Genet. 8, 903–910 (2000).

    Article  CAS  Google Scholar 

  16. Bentz, M., Plesch, A. Stilgenbauer, S. Döbner H., Lichter, P. Minimal sizes of deletions detected by comparative genomic hybridization. Genes Chromosom. Cancer 21, 172–175 (1998).

    Article  CAS  Google Scholar 

  17. National Institutes of Health and Institute of Molecular Medicine Collaboration. A complete set of human telomeric probes and their clinical application. Nature Genet. 13, 86–89 (1996).

  18. Knight, S.J.L. et al. An optimized set of human telomere clones for studying telomere integrity and architecture. Am. J. Hum. Genet. 67, 320–332 (2000).

    Article  CAS  Google Scholar 

  19. Nederlof, P.M. et al. Multiple fluorescence in situ hybridization. Cytometry 11, 126–131 (1990).

    Article  CAS  Google Scholar 

  20. Karhu, R. et al. Quality control of CGH: Impact of metaphase chromosomes and the dynamic range of hybridization. Cytometry 28, 198–205 (1997).

    Article  CAS  Google Scholar 

  21. Saracoglu, K. et al. New concepts to improve resolution and sensitivity of molecular cytogenetic diagnostics by multicolor FISH. Cytometry (in the press).

  22. Flint, J., Wilkie, A.O.M., Buckle, V.J., Holland, A.J. & McDermid, H.E. The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nature Genet. 9, 132–140 (1995).

    Article  CAS  Google Scholar 

  23. Knight, S.J.L. et al. Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur. J. Hum. Genet. 5, 1–8 (1997).

    CAS  PubMed  Google Scholar 

  24. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genet. 20, 207–211 (1998).

    Article  CAS  Google Scholar 

  25. Pollack, J.R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet. 23, 41–46 (1999).

    Article  CAS  Google Scholar 

  26. .Grimwade, D. et al. The importance of diagnostic cytogenetics on outcome in AML: Analysis of 1,612 patients entered into the MRC AML 10 trial. Blood 92, 2322–2333 (1998).

    CAS  PubMed  Google Scholar 

  27. Macina, R.A. et al. Sequence organization of the human 2q telomere. Hum. Mol. Genet. 3, 1847–1853 (1994).

    Article  CAS  Google Scholar 

  28. Nesslinger, N.J. et al. Clinical, cytogenetic, and molecular characterization of seven patients with deletions of chromosome 22q13.3. Am. J. Hum. Genet. 54, 464–472 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Horsley, S.W. et al. Del(18p) shown to be a cryptic translocation using a multiprobe FISH assay for subtelomeric chromosome rearrangements. J. Med. Genet. 35, 722–726 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Flint and S. Knight for supplying the second-generation subtelomeric probes; V. Buckle for critical reading of the manuscript; and M. Schulze for modifications to the MacProbe v4.1 software. This work was supported in part by the Leukaemia Research Fund, UK (to J.B.) and the Medical Research Council (to L.K). R.E. was supported by the German Minister for Education and Research (BMBF, BioFuture grant AZ 11880), the Deutsche Forschungsgemeinschaft (Ja 395/6-2; Ei-358/1-1) and the German-Israeli foundation for research and technology (GIF G-112-207.04/97).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyndal Kearney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J., Saracoglu, K., Uhrig, S. et al. Subtelomeric chromosome rearrangements are detected using an innovative 12-color FISH assay (M-TEL). Nat Med 7, 497–501 (2001). https://doi.org/10.1038/86581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/86581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing