Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Cell identification and isolation on the basis of cytokine secretion: A novel tool for investigating immune responses

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytokine detection using gel microdrop micro-encapsulation.
Figure 2: Microencapsulation allows the detection of cytokine production.
Figure 3: Microencapsulation does not alter cytokine secretion by human PBMCs.

References

  1. Mossmann, T.R. & Coffman, R.L. Two types of mouse helper T-cell clone–implications immune for regulation. Immunol. Today 8, 223–228 (1987).

    Article  Google Scholar 

  2. Chen, Y. et al. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376, 177–180 (1995).

    Article  CAS  Google Scholar 

  3. Groux H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  Google Scholar 

  4. Powell, K.T. & Weaver, J.C. Gel microdroplets and flow cytometry: rapid determination of antibody secretion by individual cells within a cell population. Biotechnology 8, 333–337 (1990).

    CAS  PubMed  Google Scholar 

  5. Weaver J.C., McGrath P. & Adams S. Gel microdrop technology for rapid isolation of rare and high producer cells. Nature Med. 3, 583–585 (1997).

    Article  CAS  Google Scholar 

  6. Gray F., Kenney J.S. & Dunne J.F. Secretion capture and report web: Use of affinity derivatized agarose microdroplets for the selection of hybridoma cells. J. Immunol. Methods 182, 155–163 (1995).

    Article  CAS  Google Scholar 

  7. Scheffold, A., Assenmacher, M., Reiners-Schramm, L., Lauster R. & Radbruch A. High-sensitivity immunofluorescence for detection of the pro- and anti-inflammatory cytokines gamma interferon and interleukin-10 on the surface of cytokine-secreting cells. Nature Med. 6, 107–110 (2000).

    Article  CAS  Google Scholar 

  8. Prussin, C. & Metcalfe, D.D. Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies. J. Immunol. Methods 188, 117–128 (1995).

    Article  CAS  Google Scholar 

  9. Manz, R., Assenmacher, M., Pfluger, E., Miltenyi, S. & Radbruch, A. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl. Acad. Sci. USA 92, 1921–1925 (1995).

    Article  CAS  Google Scholar 

  10. Brosterhus, H., et al. Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur. J. Immunol. 29, 4053–4059 (1999).

    Article  CAS  Google Scholar 

  11. Davies, M et al. Overexpression of autocrine TGFβ1 suppresses the growth of spindle epithelial cells in vitro and in vivo in the rat 4NQO model of oral carcinogenesis. Int. J. Cancer 73, 68–74 (1997).

    Article  CAS  Google Scholar 

  12. Johnston, J.B. et al., Deposition of transforming growth factor-β in the marrow in myelofibrosis and the intracellular localization and secretion of TGF-β by leukemic cells. Am. J. Clin. Pathol. 103, 574–582 (1995).

    Article  CAS  Google Scholar 

  13. Powrie, F., Carlino, J., Leach, M.W., Mauze, S. & Coffman, R.L. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells. J. Exp. Med. 183, 2669–2674 (1996).

    Article  CAS  Google Scholar 

  14. Groux, H. & Powrie, F. Regulatory T cells and inflammatory bowel disease. Immunol. Today 20, 442–446 (1999).

    Article  CAS  Google Scholar 

  15. Gift, E.A. & Weaver, J.C. Simultaneous quantitative determination of electroporative molecular uptake and subsequent cell survival using gel microdrops and flow cytometry. Cytometry 39, 243–249 (2000).

    Article  CAS  Google Scholar 

  16. Beech, J.T., Bainbridge, T. & Thompson, S.J. Incorporation of cells into an ELISA system enhances antigen driven lymphokine detection. J. Immunol. Meth. 205, 163–168 (1997).

    Article  CAS  Google Scholar 

  17. Parikh, I., March, S. & Cuatrecasas, P. Topics in the methodology of substitution reactions with agarose. Meth. Enzymol. 34, 77–102 (1974).

    Article  CAS  Google Scholar 

  18. Hermanson, G.T. in Bioconjugate Techniques. (Academic Press, San Diego, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank S. Sreckovic for assistance with cell sorting and Ian Patterson for the V69C5 cells. N.A.W. is a Wellcome Trust Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil A. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turcanu, V., Williams, N. Cell identification and isolation on the basis of cytokine secretion: A novel tool for investigating immune responses. Nat Med 7, 373–376 (2001). https://doi.org/10.1038/85533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/85533

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing