Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anti-tumoral action of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation

Abstract

Δ9-Tetrahydrocannabinol, the main active component of marijuana, induces apoptosis of transformed neural cells in culture. Here, we show that intratumoral administration of Δ9-tetrahydrocannabinol and the synthetic cannabinoid agonist WIN-55,212-2 induced a considerable regression of malignant gliomas in Wistar rats and in mice deficient in recombination activating gene 2. Cannabinoid treatment did not produce any substantial neurotoxic effect in the conditions used. Experiments with two subclones of C6 glioma cells in culture showed that cannabinoids signal apoptosis by a pathway involving cannabinoid receptors, sustained ceramide accumulation and Raf1/extracellular signal-regulated kinase activation. These results may provide the basis for a new therapeutic approach for the treatment of malignant gliomas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cannabinoid-induced regression of malignant gliomas in Wistar rats.
Figure 2: Cannabinoid-induced regression of malignant gliomas in Rag2−/− mice.
Figure 3: Different sensitivity of C6.9 and C6.4 glioma cells to THC-induced death.
Figure 4: Short-term effect of THC on sphingomyelin hydrolysis, ceramide levels and ERK activity in C6.9 and C6.4 glioma cells.
Figure 5: Long-term effect of THC on ceramide levels and ERK, Raf1 and KSR activity in C6.9 and C6.4 glioma cells.

Similar content being viewed by others

References

  1. Pertwee, R.G. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther. 74, 129–180 (1997).

    CAS  PubMed  Google Scholar 

  2. Felder, C.C. & Glass, M. Cannabinoid receptors and their endogenous agonists. Annu. Rev. Pharmacol. Toxicol. 38, 179–200 (1998).

    Article  CAS  Google Scholar 

  3. Matsuda, L.A., Lolait, S.J., Brownstein, M., Young, A. & Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    Article  CAS  Google Scholar 

  4. Munro, S., Thomas, K.L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61– 65 (1993).

    Article  CAS  Google Scholar 

  5. Devane, W.A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    Article  CAS  Google Scholar 

  6. Di Marzo, V. et al. Formation and inactivation of endogenous cannabinoid anandamide . Nature 372, 686–691 (1994).

    Article  CAS  Google Scholar 

  7. Stella, N., Schweitzer, P. & Piomelli, D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 388, 773– 778 (1997).

    Article  CAS  Google Scholar 

  8. Childers, S.R. & Breivogel, C.S. Cannabis and endogenous cannabinoid systems. Drug Alcohol Depen. 51, 173– 187 (1998).

    Article  CAS  Google Scholar 

  9. Di Marzo, V., Melck, D., Bisogno, T. & De Petrocellis, L. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci. 21, 521–528 (1998).

    Article  CAS  Google Scholar 

  10. Grinspoon, L. & Bakalar, J.B. Marihuana as medicine: a plea for consideration. J. Am. Med. Assoc. 273, 1875–1876 (1995).

    Article  CAS  Google Scholar 

  11. Voth, E. & Schwartz, R. Medicinal applications of delta-9-tetrahydrocannabinol and marijuana. Ann. Intern. Med. 126, 791 –798 (1997).

    Article  CAS  Google Scholar 

  12. De Petrocellis, L. et al. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc. Natl. Acad. Sci. USA 95, 8375–8380 (1998).

    Article  CAS  Google Scholar 

  13. Sánchez, C., Galve-Roperh, I., Canova, C., Brachet, P. & Guzmán, M. Δ9-Tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Lett. 436 , 6–10 (1998).

    Article  Google Scholar 

  14. Barth, R.F. Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74) RT-2 and CNS-1 gliomas. J. Neurooncol. 36 , 91–102 (1998).

    Article  CAS  Google Scholar 

  15. Shinkai, Y. et al. RAG-2-Deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  16. Louis, D.N. & Gusella, J.F. A tiger behind many doors: multiple genetic pathways to malignant gliomas. Trends Genet. 11, 412–415 (1995).

    Article  CAS  Google Scholar 

  17. Maintz, D. et al. Molecular genetic evidence for subtypes of oligoastrocytomas . J. Neuropathol. Exp. Neurol. 56, 1098– 1104 (1997).

    Article  CAS  Google Scholar 

  18. Röser, K., Bohn, W., Giese, G. & Mannweiler, K. Subclones of C6 rat glioma cells differing in intermediate filament protein expression . Exp. Cell Res. 197, 200– 206 (1991).

    Article  Google Scholar 

  19. Baudet, C. et al. 1,25-Dihydroxyvitamin D3 induces programmed cell death in rat glioma cell line. J. Neurosci. Res. 46 , 540–545 (1996).

    Article  CAS  Google Scholar 

  20. Sánchez, C., Galve-Roperh, I., Rueda, D. & Guzmán, M. Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Δ9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol. Pharmacol. 54, 834–843 ( 1998).

    Article  Google Scholar 

  21. Blázquez, C., Sánchez, C., Daza, A., Galve-Roperh, I. & Guzmán, M. The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme. J. Neurochem. 72, 1759–1768 (1999).

    Article  Google Scholar 

  22. Ariga, T., Jarvis, W.D. & Yu, R.K. Role of sphingomyelin-mediated cell death in neurodegenerative diseases. J. Lipid Res. 39, 1– 16 (1998).

    CAS  PubMed  Google Scholar 

  23. Kolesnick, R.N. & Krönke, M. Regulation of ceramide production and apoptosis. Annu. Rev. Physiol. 60, 643–665 (1998).

    Article  CAS  Google Scholar 

  24. Marshall, C.J. Taking the Rap. Nature 392, 553– 554 (1998).

    Article  CAS  Google Scholar 

  25. Morrison, D.K. & Cutler, R.E., Jr. The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. 9, 174–179 (1997).

    Article  CAS  Google Scholar 

  26. Zhang, Y. et al. Kinase supressor of Ras is ceramide-activated protein kinase . Cell 89, 63–72 (1997).

    Article  CAS  Google Scholar 

  27. Nicotera, P., Leist, M. & Manzo, L. Neuronal cell death: a demise with different shapes. Trends Pharmacol. Sci. 20, 46–51 (1999).

    Article  CAS  Google Scholar 

  28. Price, D.L. New order from neurological disorders. Nature 399, A3–A5 (1999).

    Article  CAS  Google Scholar 

  29. Huwiler, A. et al. Ceramide binding and activation defines protein kinase c-raf as a ceramide-activated protein kinase. Proc. Natl. Acad. Sci. USA 93, 6959–6963 ( 1996).

    Article  CAS  Google Scholar 

  30. Müller, G. et al. Regulation of Raf-1 kinase by TNF via its second messenger ceramide and cross-talk with mitogenic signalling. EMBO J. 17, 732–742 (1998).

    Article  Google Scholar 

  31. Michaud, N.R. et al. KSR stimulates Raf-1 activity in a kinase-independent manner . Proc. Natl. Acad. Sci. USA 94, 12792– 12796 (1997) (correction 95, 2714, 1998).

    Article  CAS  Google Scholar 

  32. Derkinderen, P., Enslen, H. & Girault, J.A. The ERK/MAP-kinases cascade in the nervous system . NeuroReport 10, R24–R34 (1999).

    CAS  PubMed  Google Scholar 

  33. Pumiglia, K.M. & Decker, S.J. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 94, 448– 452 (1997).

    Article  CAS  Google Scholar 

  34. York, R.D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622– 626 (1998).

    Article  CAS  Google Scholar 

  35. Mohr, S., McCormick, T.S. & Lapetina, E.G. Macrophages resistant to endogenously generated nitric oxide-mediated apoptosis are hypersensitive to exogenously added nitric oxide donors: Dichotomous apoptotic response independent of caspase 3 and reversal by the mitogen-activated protein kinase kinase (MEK) inhibitor PD 098059. Proc. Natl. Acad. Sci. USA 95, 5045– 5050 (1998).

    Article  CAS  Google Scholar 

  36. Murray, B., Alessandrini, A., Cole, A.J., Yee A.G. & Furshpan, E.J. Inhibition of the p42/p44 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity. Proc. Natl. Acad. Sci. USA 95, 11975–11980 (1998).

    Article  CAS  Google Scholar 

  37. Martuza, R.L. Act locally, think globally. Nature Med. 3, 1323 (1997).

    Article  CAS  Google Scholar 

  38. Laske, D.W., Youle, R.J. & Oldfield, E.H. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nature Med. 3, 1362–1368 (1997).

    Article  CAS  Google Scholar 

  39. Ram, Z. et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nature Med. 3 , 1354–1361 (1997).

    Article  CAS  Google Scholar 

  40. Mason, W., Louis, D.N. & Cairncross, J.G. Chemosensitive gliomas in adults: which ones and why? J. Clin. Oncol. 15, 3423– 3426 (1997).

    Article  CAS  Google Scholar 

  41. Avgeropoulos, N.G. & Batchelor, T.T. New treatment strategies for malignant gliomas. Oncologist 4, 209–224 (1999).

    CAS  PubMed  Google Scholar 

  42. Skaper, S.D. et al. The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc. Natl. Acad. Sci. USA 93, 3984–3989 ( 1996).

    Article  CAS  Google Scholar 

  43. Shen, M. & Thayer, S.A. Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol. Pharmacol. 54, 459–462 ( 1998).

    Article  CAS  Google Scholar 

  44. Nagayama, T. et al. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J. Neurosci. 19, 2987–2995 (1999).

    Article  CAS  Google Scholar 

  45. Hampson, A.J., Grimaldi, M., Axelrod, J. & Wink, D. Cannabidiol and (−)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. USA 95, 8268–8273 (1998).

    Article  CAS  Google Scholar 

  46. Brotchie, J.M. Novel approaches to the symptomatic treatment of parkinsonian syndromes: alternatives and adjuncts to dopamine-replacement. Curr. Opin. Neurol. 10, 340–345 (1997).

    Article  CAS  Google Scholar 

  47. Izquierdo, M. et al. Long-term rat survival after malignant brain tumor regression by retroviral gene therapy. Gene Ther. 2, 66–69 (1995).

    CAS  PubMed  Google Scholar 

  48. Cortés, M.L., de Felipe, P., Martín, V., Hughes, M.A. & Izquierdo, M. Successful use of a plant gene in the treatment of cancer in vivo. Gene Ther. 5, 1499–1507 (1998).

    Article  Google Scholar 

  49. Galve-Roperh, I. et al. Evidence for the lack of involvement of sphingomyelin hydrolysis in the tumor necrosis factor-induced secretion of nerve growth factor in primary astrocyte cultures. J. Neurochem. 71, 498 –505 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank following: J. Palacín and his collaborators for animal handling and care; A. Royo, P. Moreno, J. Ruiz-Cabello and their collaborators for MRI procedures; M.L. de Ceballos and C. Bailón for TUNEL staining; D. Rueda for cell culture; F. Valino for computer assistance; Sanofi Recherche (Montpellier, France) for SR141716, SR144528 and the antibody against the CB2 cannabinoid receptor; A. Howlett for the anti-CB1 cannabinoid receptor antibody; J.J. Fernández Ruiz and J.A. Ramos for WIN-55,212-2 and CP-55,940; and R. Mechoulam for HU-210. This work was supported by grants from Comisión Interministerial de Ciencia y Tecnología (PM 98-0079 to M.G., and PM98-0007 to M.I.) and Comunidad Autónoma de Madrid (8.5/17/98 to M.G., 8.1/6/97 to M.I., and 8.6/21/98 to M.I.). Severo Ochoa Molecular Biology Center is the recipient of an institutional grant from Fundación Ramón Areces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Guzmán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galve-Roperh, I., Sánchez, C., Cortés, M. et al. Anti-tumoral action of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6, 313–319 (2000). https://doi.org/10.1038/73171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing