Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uteroglobin is essential in preventing immunoglobulin A nephropathy in mice

Abstract

The molecular mechanism(s) of immunoglobulin A (IgA) nephropathy, the most common primary renal glomerular disease worldwide, is unknown. Its pathologic features include hematuria, high levels of circulating IgA–fibronectin (Fn) complexes, and glomerular deposition of IgA, complement C3, Fn and collagen. We report here that two independent mouse models (gene knockout and antisense transgenic), both manifesting deficiency of an anti-inflammatory protein, uteroglobin (UG), develop almost all of the pathologic features of human IgA nephropathy. We further demonstrate that Fn–UG heteromerization, reported to prevent abnormal glomerular deposition of Fn and collagen, also abrogates both the formation of IgA–Fn complexes and their binding to glomerular cells. Moreover, UG prevents glomerular accumulation of exogenous IgA in UG-null mice. These results define an essential role for UG in preventing mouse IgA nephropathy and warrant further studies to determine if a similar mechanism(s) underlies the human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and characterization of the AS-UG transgenic mice.
Figure 2: Histopathological and immunohistochemical analyses of mouse kidney sections.
Figure 3: Abnormal deposition of IgA and complement C3.
Figure 4: The effects of UG on IgA–FN complex formation and IgA–FN complex binding to cultured mesangial cells.
Figure 5: Inhibition of renal glomerular deposition of exogenous IgA by UG.
Figure 6: Expression of mRNA for Fn, the α1-chain of type IV collagen and PDGF-B in the glomeruli of UG–/– mice.

Similar content being viewed by others

References

  1. Krishnan, R.S. & Daniel J.C. Jr. "Blastokinin": inducer and regulator of blastocyst development in the rabbit uterus. Science 158, 490–492 (1967).

    Article  CAS  Google Scholar 

  2. Beier, H.M. Uteroglobin: a hormone-sensitive endometrial protein involved in blastocyst development. Biochim. Biophys. Acta. 160, 289–291 (1968).

    Article  CAS  Google Scholar 

  3. Mukherjee, A.B. et al. Uteroglobin: A novel cytokine? Cell. Mol. Life Sci. 55, 771–787 (1999).

    Article  CAS  Google Scholar 

  4. Kleis-SanFrancisco, S., Hewetson, A. & Chilton, B.S. Prolactin augments progesterone-dependent uteroglobin gene expression by modulating promoter-binding proteins. Mol. Endocrinol. 7, 214–223 (1993).

    CAS  Google Scholar 

  5. Hewetson, A. & Chilton, B.S. Novel elements in the uteroglobin promoter are a functional target for prolactin signaling. Mol. Cell Endocrinol. 136, 1–6 (1997).

    Article  CAS  Google Scholar 

  6. Yao, X.L., Ikezono, T., Cowan, M., Logun, C., Angus, C.W. & Shelhamer, J. Interferon-gamma stimulates human Clara cell protein production by human airway epithelial cells. Am. J. Physiol. 274, L864–L869 (1998).

    CAS  Google Scholar 

  7. Magdaleno, S.M. et al. Interferon-gamma regulation of Clara cell gene expression: in vivo and in vitro. Am. J. Physiol. 272, L1142–L1151 (1997).

    CAS  Google Scholar 

  8. Peri, A., Cordella-Miele, E., Miele, L. & Mukherjee, A.B. Tissue-specific expression of the gene coding for human Clara cell 10- kD protein, a phospholipase A2-inhibitory protein. J. Clin. Invest. 92, 2099–2109 (1993).

    Article  CAS  Google Scholar 

  9. Kikukawa, T. & Mukherjee, A.B. Detection of a uteroglobin-like phospholipase A2-inhibitory protein in the circulation of rabbits. Mol. Cell. Endocrinol. 62, 177–187 (1989).

    Article  CAS  Google Scholar 

  10. Aoki, A. et al. Isolation of human uteroglobin from blood filtrate. Mol. Hum. Reprod. 2, 489–497 (1996).

    Article  CAS  Google Scholar 

  11. Bernard, A.M., Lauwerys,R.R., Noel, A., Vandeleene, B. & Lambert, A. Urine protein 1:a sex-dependent marker of tubular and glomerular dysfunction. Clin. Chem. 35, 2141–2142 (1989).

    CAS  Google Scholar 

  12. Zhang, Z. et al. Human uteroglobin gene: structure, subchromosomal localization, and polymorphism. DNA Cell Biol. 16, 73–83 (1997).

    Article  CAS  Google Scholar 

  13. Kundu, G.C., Mandal, A.K., Zhang, Z., Mantile-Selvaggi, G. & Mukherjee, A.B. Uteroglobin (UG) suppresses extracellular matrix invasion by normal and cancer cells that express the high affinity UG-binding proteins. J. Biol. Chem. 273, 22819–22824 (1998).

    Article  CAS  Google Scholar 

  14. Miele, L., Cordella-Miele, E., Facchiano, A. & Mukherjee, A.B. Novel anti-inflammatory peptides from the region of highest similarity between uteroglobin and lipocortin I. Nature 335, 726–730 (1988).

    Article  CAS  Google Scholar 

  15. Zhang, Z. et al. Severe fibronectin-deposit renal glomerular disease in mice lacking uteroglobin. Science 276, 1408–1412 (1997).

    Article  CAS  Google Scholar 

  16. Hynes, R.O. in Fibronectins. Sci. Am. 254,42–51 (1986).

    Article  CAS  Google Scholar 

  17. Cederholm, B., Wieslander, J., Bygren, P. & Heinegard, D. Patients with IgA nephropathy have circulating anti-basement membrane antibodies reacting with structures common to collagen III, and IV. Proc. Natl. Acad. Sci. USA 83, 6151–6155 (1986).

    Article  CAS  Google Scholar 

  18. Baldree, B. et al. Immunoglobulin A-fibronectin aggregate levels in children and adults with immunoglobulin A nephropathy. Am. J. Kidney Dis. 22, 1–8 (1993).

    Article  CAS  Google Scholar 

  19. Waga, S. et al. IgA interaction with carboxy-terminal 43-kD fragment of fibronectin in IgA nephropathy. J. Am. Soc. Nephrol. 10, 256–263 (1999).

    CAS  Google Scholar 

  20. Berger, J. & Hinglais, N. Intercapillary deposits of IgA-IgG. J. Urol. Nephrol. 74, 694–695 (1968).

    CAS  Google Scholar 

  21. Zhang, Q. & Mosher, D.F. Cross-linking of the NH2-terminal region of fibronectin to molecules of large apparent molecular mass. Characterization of fibronectin assembly sites induced by the treatment of fibroblasts with lysophosphatidic acid. J. Biol. Chem. 271, 33284–33292 (1996).

    Article  CAS  Google Scholar 

  22. Emancipator, S.N., Rao, C.S., Amore, A., Coppo, R. & Nedrud, J.G. Macromolecular properties that promote mesangial binding and mesangiopathic nephritis. J. Am. Soc. Nephrol. 2, S149–158 (1992).

    CAS  Google Scholar 

  23. Launay, P. et al. Alternative endocytic pathway for immunoglobulin A Fc receptors (CD89) depends on the lack of FcRgamma association and protects against degradation of bound ligand. J. Biol. Chem. 274, 7116–7125 (1999).

    Article  Google Scholar 

  24. Lai, K.N., To, W.Y., Li, P.K. & Leung, J.C. Increased binding of polymeric lambda-IgA to cultured human mesangial cells in IgA nephropathy. Kidney Int. 49, 839–845 (1996).

    Article  CAS  Google Scholar 

  25. Gomez-Guerrero, C., Duque, N. & Egido, J. Stimulation of Fc(alpha) receptors induces tyrosine phosphorylation of phospholipase C-gamma(1), phosphatidylinositol phosphate hydrolysis, and Ca2+ mobilization in rat and human mesangial cells. J. Immunol. 156, 4369–4376 (1996).

    CAS  Google Scholar 

  26. Border, W.A., Okuda, S., Languino, L.R., Sporn, M.R. & Ruoslahti, E. Transforming growth factor-beta in disease: the dark side of tissue repair. J. Clin. Invest. 90, 1–7 (1992).

    Article  CAS  Google Scholar 

  27. Naito, T. et al. Clinical assessment of the significance of platelet-derived growth factor in patients with immunoglobulin A nephropathy. J. Lab. Clin. Med. 130, 63–68 (1997).

    Article  CAS  Google Scholar 

  28. Johnston, C.J., Finkelstein, J.N., Oberdorster, G., Reynolds, S.D. & Stripp, B.R. Clara cell secretory protein-deficient mice differ from wild-type mice in inflammatory chemokine expression to oxygen and ozone, but not to endotoxin. Exp. Lung. Res. 25, 7–21 (1999).

    Article  CAS  Google Scholar 

  29. Shijubo, N. et al. Serum levels of Clara cell 10 kDa protein are decreased in patients with asthma. Lung 177, 45–52 (1999).

    Article  CAS  Google Scholar 

  30. Volvovitz, B. et al. Relationship between leukotriene C4 and a uteroglobin-like protein in nasal and tracheobronchial mucosa of children: Implication in acute respiratory illness. International Archives of Allergy and Applied Immunology 86, 420–425 (1988).

    Article  Google Scholar 

  31. Endo, Y. & Kanbayashi, H. Etiology of IgA nephropathy syndrome. Pathol. Int. 44, 1–13 (1994).

    Article  CAS  Google Scholar 

  32. Ohmacht, C. et al. Recurrent immunoglobulin A nephropathy after renal transplantation: a significant contributor to graft loss. Transplantation 64, 1493–1496 (1997).

    Article  CAS  Google Scholar 

  33. D'Amico, G. Pathogenesis of immunoglobulin A nephropathy. Curr. Opin. Nephrol. Hypertens. 7, 247–250 (1998).

    Article  CAS  Google Scholar 

  34. Ray, M.K., Magdaleno, S., O'Malley, B.W. & DeMayo F.J. Cloning and characterization of the mouse uteroglobin-specific protein gene: comparison of the 5´-flanking region with human rat and rabbit gene. Biochem. Biophys. Res. Commun. 197, 163–171 (1993).

    Article  CAS  Google Scholar 

  35. Oh, E., Pierschbacher, M. & Ruoslahti, E. Deposition of plasma fibronectin in tissues. Proc. Natl. Acad. Sci. USA 78, 3218–3220 (1981).

    Article  CAS  Google Scholar 

  36. Howie, A.J., Gregory, J., Thompson, R.A., Adkins, M.A. & Niblett, A.J. Technical improvements in the immunoperoxidase study of renal biopsy specimens. J. Clin. Pathol. 43, 257–259 (1990).

    Article  CAS  Google Scholar 

  37. Klein-Schneegans, A.S., Gaveriaux, C., Fonteneau, P. & Loor, F. Indirect double sandwich ELISA for the specific and quantitative measurement of mouse IgM, IgA and IgG subclasses. J. Immunol. Meth. 119, 117–125 (1989).

    Article  CAS  Google Scholar 

  38. Zheng, F., Striker, G.E., Esposito, C., Lupia, E. & Striker, L.J. Strain differences rather than hyperglycemia determine the severity of glomerulosclerosis in mice. Kidney Int. 54, 1999–2007 (1998).

    Article  CAS  Google Scholar 

  39. Yang, C.W. et al. Overexpression of transforming growth factor-beta 1 mRNA is associated with up-regulation of glomerular tenascin and laminin gene expression in non-obese diabetic mice. J. Am. Soc. Nephrol. 5, 1610–1617 (1995).

    CAS  Google Scholar 

  40. Peten, E.P. et al. Age-related changes in alpha 1- and alpha 2-chain type IV collagen mRNAs in adult mouse glomeruli: competitive PCR. Am. J. Physiol. 263, F951–57 (1992).

    CAS  Google Scholar 

  41. Bergijk, E.C. et al. Cloning of the mouse fibronectin V-region and variation of its splicing pattern in experimental immune complex glomerulonephritis. J. Pathol. 178, 462–468 (1996).

    Article  CAS  Google Scholar 

  42. Shaddy, R.E., Zhang, Y.L. & White, W.L. Murine and pediatric myocardial growth factor mRNA expression using reverse transcription-polymerase chain reaction. Biochem. Mol. Med. 57, 10–13 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Owens, J.Y.Chou, S.W. Levin, J.D. Butler and J.B. Sidbury Jr. for critical review of the manuscript and for suggestions. We also thank K. Takashi for discussions and support throughout this study. The photomicroscopic assistance of R. Dreyfuss and S. Everett (Medical Arts and Photography Branch, NIH) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil B. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, F., Kundu, G., Zhang, Z. et al. Uteroglobin is essential in preventing immunoglobulin A nephropathy in mice. Nat Med 5, 1018–1025 (1999). https://doi.org/10.1038/12458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing