Journal home
Advance online publication
Current issue
Archive
Press releases
Supplements
Focuses
Guide to authors
Online submissionOnline submission
For referees
Free online issue
Contact the journal
Subscribe
Advertising
work@npg
Reprints and permissions
About this site
For librarians
 
NPG Resources
Nature
Nature Reviews
Nature Immunology
Nature Cell Biology
Nature Genetics
news@nature.com
Nature Conferences
Dissect Medicine
NPG Subject areas
Biotechnology
Cancer
Chemistry
Clinical Medicine
Dentistry
Development
Drug Discovery
Earth Sciences
Evolution & Ecology
Genetics
Immunology
Materials Science
Medical Research
Microbiology
Molecular Cell Biology
Neuroscience
Pharmacology
Physics
Browse all publications
Article
Nature Medicine  4, 781 - 785 (1998)
doi:10.1038/nm0798-781

Diabetes induced by Coxsackie virus: Initiation by bystander damage and not molecular mimicry

Marc S. Horwitz1, Linda M. Bradley1, Judith Harbertson1, Troy Krahl1, Jae Lee1 & Nora Sarvennick1, 2

  1Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037 USA

  2Correspondence should be addressed to N.S. e-amil: noras@scripps.edu

Viral induction of autoimmunity is thought to occur by either bystander T-cell activation or molecular mimicry. Coxsackie B4 virus is strongly associated with the development of insulin-dependent diabetes mellitus in humans and shares sequence similarity with the islet autoantigen glutamic acid decarboxylase. We infected different strains of mice with Coxsackie B4 virus to discriminate between the two possible induction mechanisms, and found that mice with susceptible MHC alleles had no viral acceleration of diabetes, but mice with a T cell receptor transgene specific for a different islet autoantigen rapidly developed diabetes. These results show that diabetes induced by Coxsackie virus infection is a direct result of local infection leading to inflammation, tissue damage, and the release of sequestered islet antigen resulting in the re-stimulation of resting autoreactive T cells, further indicating that the islet antigen sensitization is an indirect consequence of the viral infection.

REFERENCES
  1. Tough, D., Borrow, P. & Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272, 1947−1950 (1996). | PubMed  | ISI | ChemPort |
  2. Tripp, R.A., Hou, S., McMickle, A., Houston, J. & Doherty, P.C. Recruitment and proliferation of CD8+ T cells in respiratory virus infections. J. Immunol. 154, 6013−6021 (1995). | PubMed  | ISI | ChemPort |
  3. Selin, L., Nahill, S. & Welsh, R. Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J. Exp. Med. 179, 1933−1943 (1994). | Article | PubMed  | ISI | ChemPort |
  4. Nahill, S. & Welsh, R. High frequency of cross-reactive cytotoxic T lymphocytes elicited during the virus-induced polyclonal cytotoxic T lymphocyte response. J. Exp. Med. 177, 317−327 (1993). | Article | PubMed  | ISI | ChemPort |
  5. Evans, C.F., Horwitz, M.S., Hobbs, M.V. & Oldstone, M.B.A. Viral infection of transgenic mice expressing a viral protein in oligodendrocytes leads to chronic central nervous system autoimmune disease. J. Exp. Med. 184, 2371−2384 (1996). | Article | PubMed  | ISI | ChemPort |
  6. Miller, S.D. et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading 3, 1−4 (1997).
  7. Yoon, J. The role of viruses and environmental factors in the induction of diabetes. Curr. Top. Microbiol. Immunol. 164, 95−123 (1990). | PubMed  | ISI | ChemPort |
  8. Andreoletti L. et al. Detection of coxsackie B virus RNA sequences in whole blood samples from adult patients at the onset of type I Diabetes Mellitus J. Med. Virol. 52, 121−127 (1997). | Article | PubMed  | ISI | ChemPort |
  9. Hyoty, H. et al. A prospective study of the role of coxsackie B and other enterovirus infections in the pathogenesis of IDDM. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes 44, 652−657 (1995). | PubMed  | ChemPort |
  10. Yoon, J., Onodera, T. & Notkins, A. Virus-induced diabetes mellitus. XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4. J. Exp. Med. 148, 1068−1080 (1978). | Article | PubMed  | ISI | ChemPort |
  11. Webb, S., Loria, R., Madge, C. & Kibrick, S. Susceptibility of mice to group B coxsackie virus is influenced by the diabetic gene. J. Exp. Med. 143 1239−1248 (1976). | Article | PubMed  | ISI | ChemPort |
  12. Hartig, P., Madge, G. & Webb, S. Diversity within a human isolate of coxsackie B4: relationship to viral-induced diabetes. J. Med. Virol. 11, 23−30 (1983). | PubMed  | ISI | ChemPort |
  13. See, D., tilles J. Pathogenesis of virus-induced diabetes in mice. J. Infect. Dis. 171 1131−1138 (1995). | PubMed  | ISI | ChemPort |
  14. Atkinson, M. et al. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J. Clin. Invest. 94, 2125−2129 (1994). | PubMed  | ISI | ChemPort |
  15. Kaufman, D. et al Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J. Clin. Invest. 89, 283−292 (1992). | PubMed  | ISI | ChemPort |
  16. Tian J. Lehmann, P. & Kaufman, D. T cell cross-reactivity between coxsackievirus and glutamate decarboxylase is associated with a murine diabetes susceptibility allele. J. Exp. Med. 180 1979−1984 (1994). | PubMed  | ISI |
  17. Ghosh, S. et al. Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nature Genet. 4, 404−409 (1993). | Article | PubMed  | ISI | ChemPort |
  18. Katz, J.D., Wang, B., Haskins, K., Benoist, C. & Mathis, D. Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089−1100 (1993). | Article | PubMed  | ISI | ChemPort |
  19. Mueller, R., Bradley, L.M., Krahl, T. & Sarvetnick, N. Mechanism underlying counterregulation of autoimmune diabetes. Immunity 7, 1−20 (1997). | Article | PubMed  |
  20. Kaufman, D. et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366, 69−72 (1993). | Article | PubMed  | ISI | ChemPort |
  21. Katz, J.D., Benoist, C. & Mathis, D. T helper cell subsets in insulin-dependent diabetes. Science 268, 1185−1188 (1995). | PubMed  | ISI | ChemPort |
  22. Tough, D.F. & Sprent, J. Viruses and T cell turnover: evidence for bystander proliferation. Imm. Rev. 150, 129−142 (1996). | ISI | ChemPort |
  23. Brabb, T. et al. Triggers of autoimmune disease in a murine TCR-transgenic model for multiple sclerosis. J. Immunol. 159, 497−507 (1997). | PubMed  | ISI | ChemPort |
  24. Pantaleo, G. et al. Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature 370, 463−467 (1994). | Article | PubMed  | ISI | ChemPort |
  25. Kalams, S. et al. Longitudinal analysis of T cell reporter(TCR) gene usage by human immunodeficiency virus 1 envelope-specific cytotoxic T lymphocyte clones reveals a limited TCR repertoire. J. Exp. Med. 179, 1261−1271 (1994). | Article | PubMed  | ISI | ChemPort |
  26. Prevost-Blondel, A. et al. In vivo longitudinal analysis of a dominant TCR repertoire selected in human response to influenza virus. Virology 233, 93−104 (1997). | Article | PubMed  | ChemPort |
  27. Utz, U. et al. Skewed T-cell receptor repertoire in genetically identical twins correlates with multiple sclerosis. Nature 364, 243−247 (1993). | Article | PubMed  | ISI | ChemPort |
  28. Wahlstrom, J. et al. Lung and blood T-cell receptor repertoire in extrinsic allergic alveolitis. Eur. Respir. J. 10, 772−779 (1997). | PubMed  | ISI | ChemPort |
  29. Conrad, B. et al. Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology. Nature 371 351−355 (1994). | Article | PubMed  | ISI | ChemPort |
  30. Butz, E.A. & Bevan, M.J. Massive expansion of antigen-specific CD8 T cells during acute virus infection. Immunity 8, 167−175 (1998) | Article | PubMed  | ISI | ChemPort |
  31. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: A reevaluation of bystander activation during viral infection. Immunity 8 177−187 (1998). | Article | PubMed  | ISI | ChemPort |
  32. Ehl, S., Hombach, J. Aichele, P., Hengartner, H. & Zinkernagel, R. Bystander activation of cytotoxic T cells: studies on the mechanism and evaluation of in vivo significance in a transgenic mouse model. J. Exp. Med. 185, 1241−1251 (1997). | Article | PubMed  | ISI | ChemPort |
  33. Zarozinski, C.C. & Welsh, R.M. Minimal bystander activation of CD8 T cells during the virus-induced polyclonal T cell response. J. Exp. Med. 185 1629−1639 (1997). | Article | PubMed  | ISI | ChemPort |
  34. Balasa, B. et al. CD40 ligand -CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice. Immunol. 159, 4620−4627 (1997). | ChemPort |
  35. Tisch, R. et al. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 366, 72−75 (1993). | Article | PubMed  | ISI | ChemPort |
 Top
 Top
Abstract
Previous | Next
Table of contents
Download PDFDownload PDF
Send to a friendSend to a friend
Save this linkSave this link
References
Export citation
Export references
natureproducts

Search buyers guide:

 
ADVERTISEMENT
 
Nature Medicine
ISSN: 1078-8956
EISSN: 1546-170X
Journal home | Advance online publication | Current issue | Archive | Press releases | Supplements | Focuses | For authors | Online submission | For referees | Free online issue | About the journal | Contact the journal | Subscribe | Advertising | work@npg | Reprints and permissions | About this site | For librarians
Nature Publishing Group, publisher of Nature, and other science journals and reference works©1998 Nature Publishing Group | Privacy policy