Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inositol prevents folate-resistant neural tube defects in the mouse

Abstract

Clinical trials demonstrate that up to 70% of neural tube defects (NTDs) can be prevented by folk acid supplementation in early pregnancy, whereas the remaining NTDs are resistant to folate. Here, we show that a second vitamin, myo-inositol, is capable of significantly reducing the incidence of spinal NTDs in curly tail mice, a genetic model of folate-resistant NTDs. Inositol increases flux through the inositol/lipid cycle, stimulating protein kinase C activity and upregulating expression of retinoic acid receptor β, specifically in the caudal portion of the embryonic hindgut. This reduces the delay in closure of the posterior neuropore, the embryonic defect that is known to lead directly to spina bifida in curly tail embryos. Our findings reveal a molecular pathway of NTD prevention and suggest the possible efficacy of combined treatment with folate and inositol in overcoming the majority of human NTDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smithells, R.W. et al. Apparent prevention of neural tube defects by periconceptional vitamin supplementation. Arch. Dis. Child. 56, 911–918 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wald, N., Sneddon, J., Densem, J., Frost, C., stone, R. & MRC Vitamin Study Research Group. Prevention of neural tube defects: Results of the Medical Research Council Vitamin Study. Lancet 338, 131–137 (1991).

    Article  Google Scholar 

  3. Czeizel, A.E. & Dudás, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 327, 1832–1835 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Seller, M.J. & Adinolfi, M. The curly tail mouse: An experimental model for human neural tube defects. Life Sci. 29, 1607–1615 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Letts, V.A., Schork, N.J., Copp, A.J., Bernfield, M. & Frankel, W.N. Mapping modifier genes for tail defects in curly tail mutant mice. Genomics 29, 719–724 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Seller, M.J., Vitamins, folic acid and the cause and prevention of neural tube defects. Ciba Found. Symp. 181, 161–173 (1994).

    CAS  PubMed  Google Scholar 

  7. Van Straaten, H.W.M. et al. Dietary methionine does not reduce penetrance in curly tail mice but causes a phenotype-specific decrease in embryonic growth. J. Nutr. 125, 2733–2740 (1995).

    CAS  PubMed  Google Scholar 

  8. Nishizuka, Y., Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 158, 607–613 (1992).

    Article  Google Scholar 

  9. Cockroft, D.L. Changes with gestational age in the nutritional requirements of postimplantation rat embryos in culture. Teratology 38, 281–290 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Cockroft, D.L., Brook, F.A. & Copp, A.J. Inositol deficiency increases the susceptibility to neural tube defects of genetically predisposed (curly tail) mouse embryos in vitro. Teratology 45, 223–232 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Kucera, J. Rate and type of congenital anomalies among offspring of diabetic women. J. Reprod. Med. 7 61–70 (1971).

    Google Scholar 

  12. Reece, E.A., Homko, C.J., Wu, Y.-K. & Wiznitzer, A. Metabolic fuel mixtures and diabetic embryopathy. Clin. Perinatol. 20, 517–532 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, W., Morriss-Kay, G.M. & Copp, A.J. Genesis and prevention of spinal neural tube defects in the curly tail mutant mouse: Involvement of retinoic acid and its nuclear receptors RAR-beta and RAR-gamma. Development 121, 681–691 (1995).

    CAS  PubMed  Google Scholar 

  14. Cockroft, D.L. Dissection and culture of postimplantation embryos. in Postimplantation Mammalian Embryos: A Practical Approach. (eds. Copp, A. J. & Cockroft, D. L.) 15–40 (IRL Press, Oxford, UK, (1990).

    Google Scholar 

  15. Copp, A.J. Relationship between timing of posterior neuropore closure and development of spinal neural tube defects in mutant (curly tail) and normal mouse embryos in culture. J. Embryol. Exp. Morphol. 88, 39–54 (1985).

    CAS  PubMed  Google Scholar 

  16. Copp, A.J., Crolla, J.A. & Brook, F.A. Prevention of spinal neural tube defects in the mouse embryo by growth retardation during neurulation. Development 104, 297–303 (1988).

    CAS  PubMed  Google Scholar 

  17. Berridge, M.J., Downes, C.P. & Hanley, M.R. Neural and developmental actions of lithium: A unifying hypothesis. Cell 59, 411–419 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Huber, B.E. & Brown, N.A. 12-O-Tetradecanoylphorbol-13-acetate actions on macromolecular synthesis, ornithine decarboxylase, and cellular differentiation of the rat embryonic visceral yolk sac in culture. Cancer Res. 43, 5552–5559 (1983).

    CAS  PubMed  Google Scholar 

  19. Chen, W., Morris-Kay, G.M. & Copp, A.J. Prevention of spinal neural tube defects in the curly tail mouse mutant by a specific effect of retinoic acid. Dev. Dyn. 199, 93–102 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Gruneberg, H. Genetical studies on the skeleton of the mouse. VIII. Curly tail. J. Genet. 52, 52–67 (1954).

    Article  Google Scholar 

  21. Neumann, P.E. et al. Multifactorial inheritance of neural tube defects: Localization of the major gene and recognition of modifiers in ct mutant mice. Nature Genet. 6, 357–362 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Estibeiro, J.P., Brook, F.A. & Copp, A.J. Interaction between splotch (Sp)and curly tail (ct) mouse mutants in the embryonic development of neural tube defects. Development 119, 113–121 (1993).

    CAS  PubMed  Google Scholar 

  23. Pinter, E. et al. Arachidonic acid prevents hyperglycemia-associated yolk sac damage and embryopathy. Am. J. Obstet. Gynecol. 155, 691–702 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Ruberte, E., Dolle, P., Chambon, P. & Morriss-Kay, G. Retinoic acid receptors and Cellular retinoid binding proteins.II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111, 45–60 (1991).

    CAS  PubMed  Google Scholar 

  25. Copp, A.J., Brook, F.A. & Roberts, H.J. A Cell-type-specific abnormality of Cell proliferation in mutant (curly tail) mouse embryos developing spinal neural tube defects. Development 104, 285–295 (1988).

    CAS  PubMed  Google Scholar 

  26. Pijnappel, W.W.M. et al. The retinoid ligand 4-oxo-retinoic acid is a highly active modulator of positional specification. Nature 366, 340–344 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Lyn, S. & Giguère, V. Localization of CRABP-I and CRABP-II mRNA in the early mouse embryo by whole-mount in situ hybridization: Implications for teratogenesis and neural development. Dev. Dyn. 199, 280–291 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Leonard, L., Horton, C., Maden, M. & Pizzey, J. A. Anteriorization of CRABP-I expression by retinoic acid in the developing mouse central nervous system and its relationship to teratogenesis.. Dev. Biol. 168, 514–528 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Kurie, J.M. et al. Retinoic acid stimulates the protein kinase C pathway before activation of its β-nuclear receptor during human teratocarcinoma differentiation. Biochim. Biophys. Acta 1179, 203–207 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Tahayato, A., Lefebvre, P., Formstecher, P. & Dautrevaux, M. A protein kinase C-dependent activity modulates retinoic acid-induced transcription. Mol. Endocrinol. 7, 1642–1653 (1993).

    CAS  PubMed  Google Scholar 

  31. Essien, F.B. & Wannberg, S.L. Methionine but not folinic acid or vitamin B-12 alters the frequency of neural tube defects in Axd mutant mice. J. Nutr. 123, 27–34 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, Q., Behringer, R.R. & De Crombrugghe, B. Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nature Genet. 13, 275–283 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Levine, J. et al. Double-blind, controlled trial of inositol treatment of depression. Am. J. Psychiatry 152, 792–794 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Benjamin, J. et al. Double-blind, placebo-controlled, crossover trial of inositol treatment for panic disorder. Am. J. Psychiatry 152, 1084–1086 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Estibeiro, J.P., Copp, A.J., Cockroft, D.L., Brown, N.A. & Clarke, D.O. Extraction of macromolecules from embryonic material. in Postimplantation Mammalian Embryos: A Practical Approach. (eds. Copp, A. J. & Cockroft, D. L.) 173–204 (IRL Press, Oxford, UK, 1990).

    Google Scholar 

  36. Dollé, P., Ruberte, E., Leroy, P., Morriss-Kay, G. & Chambon, P. Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110, 1133–1151 (1990).

    PubMed  Google Scholar 

  37. Ruberte, E., Friederich, V., Morriss-Kay, G. & Chambon, P. Differential distribution patterns of CRABP I and CRABP II transcripts during mouse embryogenesis. Development 115, 973–987 (1992).

    CAS  PubMed  Google Scholar 

  38. Wilkinson, D.G. In Situ Hybridisation: A Practical Approach (IRL Press, Oxford, UK, 1992).

    Google Scholar 

  39. Brook, F.A., Shum, A.S.W., Van Straaten, H.W.M. & Copp, A.J. Curvature of the caudal region is responsible for failure of neural tube closure in the curly tail (ct) mouse embryo. Development 113, 671–678 (1991).

    CAS  PubMed  Google Scholar 

  40. Peeters, M.C.E., Shum, A.S.W., Hekking, J.W.M., Copp, A.J. & Van Straaten, H.W.M. Relation between altered axial curvature and neural tube closure in normal and mutant (curly tail) mouse embryos. Anat. Embryol. 193, 123–130 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greene, N., Copp, A. Inositol prevents folate-resistant neural tube defects in the mouse. Nat Med 3, 60–66 (1997). https://doi.org/10.1038/nm0197-60

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0197-60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing