Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glycosylation of microtubule–associated protein tau: An abnormal posttranslational modification in Alzheimer's disease

Abstract

Alzheimer's disease (AD) is characterized by the presence of numerous neurons with neurofibrillary tangles of paired helical filaments (PHFs). The microtubule–associated protein tau in abnormally hyperphosphorylated form is the major protein subunit of the PHF. We now show that PHF tangles isolated from AD brains are glycosylated, whereas no glycan is detected in normal tau. Deglycosylation of PHF tangles by endoglycosidase F/N–glycosidase F converts them into bundles of straight filaments 2.5 ± 0.5 nm in diameter, similar to those generated by the interaction of normal tau and abnormally hyperphosphorylated tau (AD P–tau). Deglycosylation plus dephosphorylation, but not deglycosylation alone, of AD P–tau and tau from PHF tangles restores their microtubule polymerization activity. Dephosphorylation of deglycosylated PHF tangles results in increased tau release. Thus, although the abnormal phosphorylation might promote aggregation of tau and inhibition of the assembly of microtubules, glycosylation appears to be responsible for the maintenance of the PHF structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Braak, H., Braak, E., Grundke-Iqbal, I. & Iqbal, K. Occurrence of neuropil threads in the senile human brain and in Alzheimer's disease: A third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci. Lett. 65, 351–355 (1986).

    Article  CAS  Google Scholar 

  2. Tomlinson, B.E., Blessed, G. & Roth, M. Observations on the brains of demented old people. J. Neurol. Sci. 11, 205–242 (1970).

    Article  CAS  Google Scholar 

  3. Alafuzoff, I., Iqbal, K., Friden, H., Adolfsson, R. & Winblad, B. Histopathological criteria for progressive dementia disorders: Clinical-pathological correlation and classification by multivariate data analysis. Acta Neuropathol. (Berl.) 74, 209–225 (1987).

    Article  CAS  Google Scholar 

  4. Grundke-Iqbal, I. et al. Microtubule-associated protein tau: A component of Alzheimer paired helical filaments. J. Biol Chem. 261, 6084–6089 (1986).

    CAS  PubMed  Google Scholar 

  5. Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 83, 4913–4917 (1986).

    Article  CAS  Google Scholar 

  6. Iqbal, K. et al. Defective brain microtubule assembly in Alzheimer's disease. Lancet 2, 421–426 (1986).

    Article  CAS  Google Scholar 

  7. Köpke, E. et al. Microbutule associated protein tau: Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J. Biol. Chem. 268, 24374–24384 (1993).

    PubMed  Google Scholar 

  8. Drubin, D.G. & Kirschner, M.W. Tau protein function in living cells. J. Cell Biol. 103, 2739–46 (1986).

    Article  CAS  Google Scholar 

  9. Ruben, G.C. et al. The microtubule associated protein tau forms a triple-stranded left-hand helical polymer. J. Biol. Chem. 266, 22019–22027 (1991).

    CAS  PubMed  Google Scholar 

  10. Goux, W.J., Rodriguez, S. & Sparkman, D.R. Analysis of the core components of Alzheimer paired helical filaments: A gas chromatography/mass spectrometry characterization of fatty acids, carbohydrates and long-chain bases. FEBS Lett. 366, 81–85 (1995).

    Article  CAS  Google Scholar 

  11. Ruben, G.C., Iqbal, K., Wisniewski, H.M., Johnson, J.E., Jr., & Grundke-Iqbal, I. Alzheimer neurofibrillary tangles contain 2.1 nm filaments structurally identical to the microtubule associated protein tau: A high resolution transmission electron microscope study of tangles and senile plaque core amyloid. Brain Res. 590, 164–179 (1992).

    Article  CAS  Google Scholar 

  12. Alonso, A., del, C., Grundke-Iqbal, I. & Iqbal, K. Alzheimer disease hyperphos-phorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nature Med. 2, 783–787 (1996).

    Article  CAS  Google Scholar 

  13. Wang, J.-Z., Gong, C.-X., Zaidi, T., Grundke-Iqbal, I. & Iqbal, K. Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J. Biol. Chem. 270, 4854–4860 (1995).

    Article  CAS  Google Scholar 

  14. Smith, M.A. et al. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. USA 91, 5710 (1994).

    Article  CAS  Google Scholar 

  15. Ledesma, M.D., Bonay, P., Colaco, C. & Avila, J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J. Biol. Chem. 269, 21614–21619 (1994).

    CAS  PubMed  Google Scholar 

  16. Yan, S.D. et al. Glycated tau protein in Alzheimer disease: A mechanism for induction of oxidant stress. Proc. Natl. Acad. Sci. USA 91, 7787 (1994).

    Article  CAS  Google Scholar 

  17. Ledesma, M.D., Bonay, P. & Avila, J. τ Protein from Alzheimer's disease patients is glycated at its tubulin-binding domain. J. Neurochem. 65, 1658 (1995).

    Article  Google Scholar 

  18. Tanaka, S., Avigad, G., Brodsky, B. & Eikenberry, E.F. Glycation induces expansion of molecular packing of collagen. J. Mol Biol. 203, 495–505 (1988).

    Article  CAS  Google Scholar 

  19. Bancher, C. et al. Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer's disease. Brain Res. 477, 90–99 (1989).

    Article  CAS  Google Scholar 

  20. Yan, S.D. et al. Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid β-peptide. Nature Med. 1, 693–699 (1995).

    Article  CAS  Google Scholar 

  21. Papasozomenos, S.ch. Tau protein immunoreactivity in dementia of the Alzheimer type. II. Electron microscopy and pathogenetic implications: Effects of fixation on the morphology of the Alzheimer's abnormal filaments. Lab. Invest. 60, 375–389 (1989).

    CAS  PubMed  Google Scholar 

  22. Brandt, R., Léger, J. & Lee, G. Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain. J. Cell Biol. 131, 1327–1340 (1995).

    Article  CAS  Google Scholar 

  23. Mason, R.P., Trumbore, M.W. & Pettegrew, J.W. Membrane interactions of a phosphomonoester elevated early in Alzheimer's disease. Neurobiol. Aging 16, 531–539 (1995).

    Article  CAS  Google Scholar 

  24. Zubenko, G.S. et al. Platelet membrane fluidity in Alzheimer's disease. Alzheimer Dis. Assoc. Disord. 2, 179 (1988).

    Article  Google Scholar 

  25. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  CAS  Google Scholar 

  26. Rogaev, E.I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome I related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  Google Scholar 

  27. Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell surface receptor. Nature 325, 733–736 (1987).

    Article  CAS  Google Scholar 

  28. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  Google Scholar 

  29. Iqbal, K., Zaidi, T., Thompson, C.H., Merz, P.A. & Wisniewski, H.M. Alzheimer paired helical filaments: Bulk isolation, solubility and protein composition. Acta. Neuropathol. (Berl.) 62, 167–177 (1984).

    Article  CAS  Google Scholar 

  30. Bensadoun, A. & Weinstein, D. Assay of proteins in the presence of interfering materials. Anal. Biochem. 70, 241–250 (1976).

    Article  CAS  Google Scholar 

  31. Wisniewski, H.M., Merz, P.A. & Iqbal, K. Ultrastructure of paired helical filaments of Alzheimer's neurofibrillary tangle. J. Neuropathol. Exp. Neurol. 43, 643–656 (1984).

    Article  CAS  Google Scholar 

  32. Cohen, P. et al. Protein phosphatase-1 and protein phosphatase-2A from rabbit skeletal muscle. Methods Enzymol. 159, 390–408 (1988).

    Article  CAS  Google Scholar 

  33. Khatoon, S., Grundke-Iqbal, I. & Iqbal, K. Brain levels of microtubule-associated protein tau are elevated in Alzheimer's disease: A radioimmuno-slot-blot assay for nanograms of the protein. J. Neurochem. 59, 750–753 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JZ., Grundke-Iqbal, I. & Iqbal, K. Glycosylation of microtubule–associated protein tau: An abnormal posttranslational modification in Alzheimer's disease. Nat Med 2, 871–875 (1996). https://doi.org/10.1038/nm0896-871

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0896-871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing