Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Influence of combinations of human major histocompatibility complex genes on the course of HIV–1 infection

Abstract

Major histocompatibility complex (MHC) genes (HLA in humans) regulate the immune response to foreign antigens. Molecular and serologic techniques were used to identify products of HLA class I, class II and transporter (TAP) genes (also part of the MHC) in homosexual seroconverters to human immunodeficiency virus type 1 (HIV–1). Comprehensive statistical analysis produced an HLA profile that predicted time from HIV–1 infection to the onset of AIDS. The profile was developed in a cohort of 139 men and evaluated in a second unrelated cohort of 102 men. In the evaluation cohort, the profile discriminated a sixfold difference between groups with the shortest and longest times to AIDS (P = 0.001). These findings support current theory about control of antigen processing by HLA genes and have implications for immunopathogenesis of HIV–1 and other infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schrager, L.K., Young, J.M., Fowler, M.G., Mathieson, B.J. & Vermund, S.H. Long-term survivors of HIV infection. Acquir. Immune Defic. Syndr. 8 (suppl. 1), S95–S108 (1994).

    Google Scholar 

  2. Phair, J. et al. Acquired immune deficiency syndrome occurring within 5 years of infection with human immunodeficiency virus type-1: The Multicenter AIDS Cohort Study. J. Acquir. Immune. Defic. Syndr. 5, 490–496 (1992).

    Article  CAS  Google Scholar 

  3. Keet, I.P.M. et al. Characteristics of long-term asymptomatic human immunodeficiency virus type 1 in men with normal and low CD4+ cell counts. J. Infect. Dis. 169, 1236–1243 (1994).

    Article  CAS  Google Scholar 

  4. Munoz, A. et al. Long term survivors with HIV-1 infection: Incubation period and longitudinal patterns of CD4+ lymphocytes. Acquir. Immune. Defic. Syndr. Hum. Retrovirol. 8, 496–505 (1995).

    Article  CAS  Google Scholar 

  5. Hessol, N.A. et al. Progression of human immunodeficiency virus type 1 (HIV-1) infection among homosexual men in hepatitis B vaccine trial cohorts in Amsterdam, New York City, and San Francisco, 1978–1991. Am. J. Epidemiol. 139, 1077–1087 (1994).

    Article  CAS  Google Scholar 

  6. Alcabes, P., Munoz, A., Vlahov, D. & Friedland, G.H. Incubation period of human immunodeficiency virus. Epidemiol. Rev. 15, 303–318 (1993).

    Article  CAS  Google Scholar 

  7. Rosenberg, P.S., Goedert, J.J. & Biggar, R.J. Effect of age at seroconversion on the natural AIDS incubation distribution: Multicenter hemophilia cohort study and the international registry of seroconverters. Acquir. Immune. Defic. Syndr. 8, 803–810 (1994).

    CAS  Google Scholar 

  8. Ashton, L.J., Learmont, J., Luo, K., Wylie, B. & Stewart, G. HIV infections in recipients of blood products from donors with known duration of infection. Lancet 344, 718–720 (1994).

    Article  CAS  Google Scholar 

  9. Rezza, G. et al. in HIV Epidemiology: Models and Methods. (ed. Nicolosi, A.) 279–291 (Raven, New York, 1994).

    Google Scholar 

  10. Centers for Disease Control, Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. Morbid. Mortal. Weekly Rep. 36 (1S) 3S–15S (1987).

  11. Townsend, A. et al. Assembly of MHC class I molecules analyzed in vitro. Cell 62, 285–295 (1990).

    Article  CAS  Google Scholar 

  12. Schumacher, T.N.M. et al. Peptide selection by MHC class-I molecules. Cell 62, 563–567 (1990).

    Article  CAS  Google Scholar 

  13. Kelly, A. et al. Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature 355, 641–644 (1992).

    Article  CAS  Google Scholar 

  14. Spies, T. et al. Presentation of viral antigen by MHC class I molecules is dependent on a putative peptide transporter heterodimer. Nature 355, 644–646 (1992).

    Article  CAS  Google Scholar 

  15. Klein, M.R. et al. Kinetics of gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: A longitudinal analysis of rapid progressors and long-term asymptomatics. J. Exp. Med. 181, 1365–1372 (1995).

    Article  CAS  Google Scholar 

  16. Rowland-Jones, S. et al. HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nature Med. 1, 59–64 (1995).

    Article  Google Scholar 

  17. Becker, Y. HIV-1 proteins in infected cells determine the presentation of viral peptides by HLA class I and class II molecules and the nature of the cellular and humoral antiviral immune responses. Virus Genes 8, 249–270 (1994).

    Article  CAS  Google Scholar 

  18. Doherty, P.C. & Zinkernagel, R.M. A biological role for the major histocompatibility antigens. Lancet 1, 1406–1409 (1975).

    Article  CAS  Google Scholar 

  19. Dupont, B. (ed.) Immunobiology of HLA. (Springer, New York, 1989).

    Google Scholar 

  20. Tiwari, J. & Terasaki, P. (eds.) HLA and Disease Associations. 383–400 (Springer, New York, 1985).

    Google Scholar 

  21. Hill, A.V.S. et al. Common West African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600 (1991).

    Article  CAS  Google Scholar 

  22. Kroner, B.L., Goedert, J.J., Carrington, M., Mann, D.L. & Blattner, W.A. Concordance of haplotype sharing, CD4 decline and AIDS in hemophilic sibling pairs. Acquir. Immune Defic. Syndr. 9, 275–280 (1995).

    CAS  Google Scholar 

  23. Keet, I.P.M., Klein, M.R., Just, J.J. & Kaslow, R.A. The role of host genetics in the natural history of HIV-1 infection: The needles in the haystack. Acquir. Immun. Defic. Syndr. Hum. Retrovir. (in the press).

  24. Mann, D.L., Carrington, M.N. & Kroner, B.L. The human major histocompatibility complex in HIV-1 pathogenesis. Acquir. Immune Defic. Syndr. 8 (suppl. 1), S53–S60 (1994).

    Google Scholar 

  25. Kaslow, R.A. & Mann, D. The role of the major histocompatibility complex in human immunodeficiency virus infection — ever more complex?. J. Infect. Dis. 169, 1332–1333 (1994).

    Article  CAS  Google Scholar 

  26. Fukuda, K. et al. Statistical detection of HLA and disease association. Tissue Antigens 26, 81–86 (1985).

    Article  CAS  Google Scholar 

  27. Klitz, W., Thomson, G., Borot, N. & Cambon-Thomsen, A. in Evolutionary Biology, Volume 26. (ed. Hecht, M.K.) 35–72 (Plenum, New York, 1992).

    Book  Google Scholar 

  28. Thursz, M.R. et al. Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia. N. Engl. J. Med. 332, 1065–1069 (1995).

    Article  CAS  Google Scholar 

  29. Phillips, R.E. et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T-cell recognition. Nature 354, 453–459 (1991).

    Article  CAS  Google Scholar 

  30. Kubo, R.T. et al. Definition of specific peptide motifs for four major HLA-A alleles. J. Immunol. 152, 3913–3924 (1994).

    CAS  PubMed  Google Scholar 

  31. Fukazawa, T. et al. Testing the importance of each residue in a HLA-B27-binding peptide using monoclonal antibodies. J. Immunol. 152, 1190–1196 (1994).

    CAS  PubMed  Google Scholar 

  32. Goedert, J.J. et al. Decreased helper T lymphocytes in homosexual men. I. Sexual contact in high incidence areas for the acquired immunodeficiency syndrome. Am. J. Epidemiol. 121, 629–636 (1985).

    Article  CAS  Google Scholar 

  33. Kaslow, R.A. et al. The Multicenter AIDS Cohort Study: Rationale, organization and selected characteristics of the participants. Am. J. Epidemiol. 126, 310–318 (1987).

    Article  CAS  Google Scholar 

  34. Amos, D.B., Pool, P. & Grier, J. in Manual of Clinical Immunology. (eds. Rose, N. & Friedman, H.) 978–986 (American Society for Microbiology, Washington, 1980).

    Google Scholar 

  35. Erlich, H.A. & Bugawan, T.L. in PCR Technology: Principles and applications for DNA Amplification. (ed. Erlich, H.A.) 193–208 (Stockton, New York, 1989).

    Google Scholar 

  36. Carrington, M. et al. Typing of HLA-DQA1 and DQB1 using DNA single-strand conformation polymorphism. Hum. Immunol. 33, 208–212 (1992).

    Article  CAS  Google Scholar 

  37. Bannai, M. et al. Discrimination of human HLA-DRB1 alleles by PCR-SSCP (single-strand conformation polymorphism) method. Eur. J. Immunogenetics 21, 1–9 (1994).

    Article  CAS  Google Scholar 

  38. Carrington, M., Colonna, M., Spies, T., Stephens, J.C. & Mann, D.L. Haplotypic variation of the transporter associated with antigen processing (TAP) genes and their extension of HLA class II region haplotypes. Immunogenetics 37, 266–273 (1993).

    Article  CAS  Google Scholar 

  39. PHREG, SAS Release 6.09, SAS Institute, Inc., Gary, North Carolina.

  40. Munoz, A. & Townsend, T.R. in Prevention and Control of Nosocomial Infection. 2nd edn. (ed. Wenzel, R.) (Williams and Wilkins, Baltimore, Maryland, 1993).

    Google Scholar 

  41. Miller, R.G. Survival Analysis. (Wiley, New York, 1981).

    Google Scholar 

  42. Begovich, A. et al. Polymorphism, recognition and linkage disequilibrium within the HLA class II region. J. Immunol. 148, 249–258 (1992).

    CAS  Google Scholar 

  43. Carrington, M. et al. Major histocompatibility complex class II haplotypes and linkage disequilibrium values observed in the CEPH families. Hum. Immunol. 41, 234–240 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaslow, R., Carrington, M., Apple, R. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV–1 infection. Nat Med 2, 405–411 (1996). https://doi.org/10.1038/nm0496-405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0496-405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing