Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome

Abstract

Staphylococcal superantigens are pyrogenic exotoxins that cause massive T cell activation leading to toxic shock syndrome and death. Despite the strong adaptive immune response induced by these toxins, infections by superantigen-producing staphylococci are very common clinical events. We hypothesized that this may be partly a result of staphylococcal strains having developed strategies that downregulate the T cell response to these toxins. Here we show that the human interleukin-2 response to staphylococcal superantigens is inhibited by the simultaneous presence of bacteria. Such a downregulatory effect is the result of peptidoglycan-embedded molecules binding to Toll-like receptor 2 and inducing interleukin-10 production and apoptosis of antigen-presenting cells. We corroborated these findings in vivo by showing substantial prevention of mortality after simultaneous administration of staphylococcal enterotoxin B with either heat-killed staphylococci or Staphylococcus aureus peptidoglycan in mouse models of superantigen-induced toxic shock syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytokine responses to SEE by human peripheral blood T cells and modulation of superantigen-induced IL-2 response by the staphylococcal cell wall.
Figure 2: Staphylococcal peptidoglycan (PGN)-embedded molecules modulate the human IL-2 response to superantigens.
Figure 3: The modulatory effect of staphylococcal PGN preparations is due to TLR2 signaling, probably in combination with TLR6, on APCs.
Figure 4: Staphylococcal PGN-embedded molecules modulate the superantigen-induced IL-2 response by signaling through the canonical NF-κB pathway.
Figure 5: The immunomodulatory effect of staphylococcal PGN on the T cell response to superantigens is mediated by IL-10 and ultimately apoptosis of APCs.
Figure 6: Staphylococcal PGN prevents TSS in a TLR2-dependent manner.

Similar content being viewed by others

References

  1. Chambers, H.F. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 7, 178–182 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuehnert, M.J. et al. Methicillin-resistant Staphylococcus aureus hospitalizations, United States. Emerg. Infect. Dis. 11, 868–872 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Klein, E., Smith, D.L. & Laxminarayan, R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg. Infect. Dis. 13, 1840–1846 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rubin, R.J. et al. The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerg. Infect. Dis. 5, 9–17 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Proft, T. & Fraser, J.D. Bacterial superantigens. Clin. Exp. Immunol. 133, 299–306 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sundberg, E.J., Deng, L. & Mariuzza, R.A. TCR recognition of peptide/MHC class II complexes and superantigens. Semin. Immunol. 19, 262–271 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bueno, C., Criado, G., McCormick, J.K. & Madrenas, J. T cell signalling induced by bacterial superantigens. Chem. Immunol. Allergy 93, 161–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Becker, K. et al. Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J. Clin. Microbiol. 41, 1434–1439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mempel, M. et al. High prevalence of superantigens associated with the egc locus in Staphylococcus aureus isolates from patients with atopic eczema. Eur. J. Clin. Microbiol. Infect. Dis. 22, 306–309 (2003).

    CAS  PubMed  Google Scholar 

  10. Nashev, D. et al. Distribution of virulence genes of Staphylococcus aureus isolated from stable nasal carriers. FEMS Microbiol. Lett. 233, 45–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Parsonnet, J. et al. Prevalence of toxin shock syndrome toxin 1–producing Staphylococcus aureus and the presence of antibodies to this superantigen in menstruating women. J. Clin. Microbiol. 43, 4628–4634 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmitz, F.J. et al. Enterotoxin and TSS toxin-1 production of methicillin resistant and methicillin sensitive Staphylococcus aureus strains. Eur. J. Epidemiol. 13, 699–708 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Davis, J.P., Chesney, P.J., Wand, P.J. & LaVenture, M. Toxic-shock syndrome: epidemiologic features, recurrence, risk factors and prevention. N. Engl. J. Med. 303, 1429–1435 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Centers for Disease Control and Prevention. Historical perspectives—reduced incidence of menstrual toxic-shock syndrome—United States, 1980–1990. MMWR Morb. Mortal. Wkly. Rep. 39, 421–423 (1990).

  15. Holtfreter, S. et al. Staphylococcus aureus carriers neutralize superantigens by antibodies specific for their colonizing strain: a potential explanation for their improved prognosis in severe sepsis. J. Infect. Dis. 193, 1275–1278 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Schlievert, P.M. et al. α and β chains of hemoglobin inhibit production of Staphylococcus aureus exotoxins. Biochemistry 46, 14349–14358 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Llewelyn, M. & Cohen, J. Superantigens: microbial agents that corrupt immunity. Lancet Infect. Dis. 2, 156–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Chuang, Y.Y., Huang, Y.C. & Lin, T.Y. TSS in children: epidemiology, pathogenesis and management. Paediatr. Drugs 7, 11–25 (2005).

    Article  PubMed  Google Scholar 

  19. Adem, P.V. et al. Staphylococcus aureus sepsis and the Waterhouse-Friderichsen syndrome in children. N. Engl. J. Med. 353, 1245–1251 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. McCormick, J.K., Yarwood, J.M. & Schlievert, P.M. TSS and bacterial superantigens: an update. Annu. Rev. Microbiol. 55, 77–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Bueno, C. et al. Bacterial superantigens bypass Lck-dependent T cell receptor signaling by activating a Gα11-dependent, PLC-β–mediated pathway. Immunity 25, 67–78 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Teft, W.A. & Madrenas, J. Molecular determinants of inverse agonist activity of biologicals targeting CTLA-4. J. Immunol. 179, 3631–3637 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Willems, F. et al. Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes. Eur. J. Immunol. 24, 1007–1009 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Buelens, C. et al. Interleukin-10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral blood dendritic cells. Eur. J. Immunol. 25, 2668–2672 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Jankovic, D. & Trinchieri, G. IL-10 or not IL-10: that is the question. Nat. Immunol. 8, 1281–1283 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ito, K. et al. HLA-DR4-IE chimeric class II transgenic, murine class II-deficient mice are susceptible to experimental allergic encephalomyelitis. J. Exp. Med. 183, 2635–2644 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Stiles, B.G., Campbell, Y.G., Castle, R.M. & Grove, S.A. Correlation of temperature and toxicity in murine studies of staphylococcal enterotoxins and TSS toxin 1. Infect. Immun. 67, 1521–1525 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Criado, G. & Madrenas, J. Superantigen stimulation reveals the contribution of Lck to negative regulation of T cell activation. J. Immunol. 172, 222–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Becker, C.E. & O'Neill, L.A. Inflammasomes in inflammatory disorders: the role of TLRs and their interactions with NLRs. Semin. Immunopathol. 29, 239–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Hashimoto, M. et al. Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J. Immunol. 177, 3162–3169 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, J.E. et al. Peptidoglycan and lipoteichoic acid from Staphylococcus aureus induce tumor necrosis factor α, interleukin 6 (IL-6), and IL-10 production in both T cells and monocytes in a human whole blood model. Infect. Immun. 68, 3965–3970 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stuyt, R.J. et al. Differential roles of interleukin-18 (IL-18) and IL-12 for induction of γ interferon by staphylococcal cell wall components and superantigens. Infect. Immun. 69, 5025–5030 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakagawa, Y. & Murai, T. Staphylococcal peptidoglycan suppresses production of interleukin-2 by T cells through a T cell–derived factor induced by direct contact between T cells and monocytes. J. Infect. Dis. 188, 1284–1294 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 97, 13766–13771 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Into, T. et al. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell. Microbiol. 6, 187–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Dillon, S. et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest. 116, 916–928 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roy, C.R. & Mocarski, E.S. Pathogen subversion of cell-intrinsic innate immunity. Nat. Immunol. 8, 1179–1187 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Netea, M.G. et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol. 172, 3712–3718 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Guo, H., Wu, X., Yu, F.S. & Zhao, J. Toll-like receptor 2 mediates the induction of IL-10 in corneal fibroblasts in response to Fusarium solu. Immunol. Cell Biol. 86, 271–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Sing, A. et al. Yersinia V-antigen exploits Toll-like receptor 2 and CD14 for interleukin 10–mediated immunosuppression. J. Exp. Med. 196, 1017–1024 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kabelitz, D. Expression and function of Toll-like receptors in T lymphocytes. Curr. Opin. Immunol. 19, 39–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, H., Komai-Koma, M., Xu, D. & Liew, F.Y. Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc. Natl. Acad. Sci. USA 103, 7048–7053 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sutmuller, R.P. et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest. 116, 485–494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haslinger-Löffler, B. et al. Staphylococcus aureus induces caspase-independent cell death in human peritoneal mesothelial cells. Kidney Int. 70, 1089–1098 (2006).

    Article  PubMed  Google Scholar 

  45. Aliprantis, A.O., Yang, R.B., Weiss, D.S., Godowski, P. & Zychlinsky, A. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J. 19, 3325–3336 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Navarre, W.W. & Zychlinsky, A. Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Cell. Microbiol. 2, 265–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Venet, F. et al. Human CD4+CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand–dependent mechanism. J. Immunol. 177, 6540–6547 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Vella, A.T., McCormack, J.E., Linsley, P.S., Kappler, J.W. & Marrack, P. Lipopolysaccharide interferes with the induction of peripheral T cell death. Immunity 2, 261–270 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Bean, A.G., Freiberg, R.A., Andrade, S., Menon, S. & Zlotnik, A. Interleukin 10 protects mice against staphylococcal enterotoxin B–induced lethal shock. Infect. Immun. 61, 4937–4939 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Krakauer, T. Inhibition of TSS toxin-1–induced cytokine production and T cell activation by interleukin-10, interleukin-4, and dexamethasone. J. Infect. Dis. 172, 988–992 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Aoki, Y. et al. Protective effect of granulocyte colony-stimulating factor against T-cell–meditated lethal shock triggered by superantigens. Blood 86, 1420–1427 (1995).

    CAS  PubMed  Google Scholar 

  52. Faulkner, L., Cooper, A., Fantino, C., Altmann, D.M. & Sriskandan, S. The mechanism of superantigen-mediated toxic shock: not a simple TH1 cytokine storm. J. Immunol. 175, 6870–6877 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Annane, D., Clair, B. & Salomon, J. Managing TSS with antibiotics. Expert Opin. Pharmacother. 5, 1701–1710 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Young, M.H., Engleberg, N.C., Mulla, Z.D. & Aronoff, D.M. Therapies for necrotising fasciitis. Expert Opin. Biol. Ther. 6, 155–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Madsen, K. Probiotics and the immune response. J. Clin. Gastroenterol. 40, 232–234 (2006).

    Article  PubMed  Google Scholar 

  56. Kanauchi, O., Matsumoto, Y., Matsumura, M., Fukuoka, M. & Bamba, T. The beneficial effects of microflora, especially obligate anaerobes, and their products on the colonic environment in inflammatory bowel disease. Curr. Pharm. Des. 11, 1047–1053 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Gill, S.R. et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 187, 2426–2438 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dale, S.E., Sebulsky, M.T. & Heinrichs, D.E. Involvement of SirABC in iron-siderophore import in Staphylococcus aureus. J. Bacteriol. 186, 8356–8362 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sebulsky, M.T., Speziali, C.D., Shilton, B.H., Edgell, D.R. & Heinrichs, D.E. FhuD1, a ferric hydroxamate-binding lipoprotein in Staphylococcus aureus: a case of gene duplication and lateral transfer. J. Biol. Chem. 279, 53152–53159 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Komoriya, K. et al. Flagellar proteins and type III–exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol. Microbiol. 34, 767–779 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K.C. Kain and Z. Lu (University Health Network, Toronto) for providing mice to harvest cells for in vitro experiments and the members of the Madrenas laboratory for helpful discussions and ideas. The human B lymphoblastoid cell line LG2 was provided by E. Long (US National Institutes of Health). This work was supported by grants from the Canadian Institutes of Health Research and the Kidney Foundation of Canada. J.K.M. is a recipient of a Canadian Institutes of Health Research New Investigator Award, E.C. is a recipient of an award from the Calder Foundation and J.M. holds a Tier I Canada Research Chair in Immunobiology.

Author information

Authors and Affiliations

Authors

Contributions

T.A.C., M.L.M. and W.B. performed the experiments; K.J.K. generated superantigens; E.D.V. generated bacterial strains; G.A. generated the computer model of the modulatory effect of staphylococcal peptidoglycan; P.K. provided mice for in vivo experiments; S.M.M.H., J.K.M., E.C. and D.E.H. designed and supervised experiments and edited the final manuscript; and J.M. coordinated the project, designed and supervised experiments and wrote the manuscript.

Corresponding author

Correspondence to Joaquín Madrenas.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–8 (PDF 3086 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, T., McCully, M., Brintnell, W. et al. Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome. Nat Med 15, 641–648 (2009). https://doi.org/10.1038/nm.1965

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1965

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing