Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cyclic AMP–regulated exocytosis of Escherichia coli from infected bladder epithelial cells

Abstract

The superficial bladder epithelium is a powerful barrier to urine and also serves as a regulator of bladder volume, which is achieved by apical exocytosis of specialized fusiform vesicles during distension of the bladder. We report that type 1 fimbriated uropathogenic Escherichia coli (UPEC) circumvents the bladder barrier by harboring in these Rab27b/CD63-positive and cAMP-regulatable fusiform vesicles within bladder epithelial cells (BECs). Incorporation of UPEC into BEC fusiform compartments enabled bacteria to escape elimination during voiding and to re-emerge in the urine as the bladder distended. Notably, treatment of UPEC-infected mice with a drug that increases intracellular cAMP and induces exocytosis of fusiform vesicles reduced the number of intracellular E. coli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uropathogenic E. coli invade superficial BECs through fusiform canals.
Figure 2: E. coli entry into Rab27b+ vesicles within BECs.
Figure 3: E. coli exocytosis from infected BECs.
Figure 4: Forskolin treatment causes exocytosis of fusiform vesicles in BECs and reduces UTI.

Similar content being viewed by others

References

  1. Hooton, T.M. & Stamm, W.E. Diagnosis and treatment of uncomplicated urinary tract infection. Infect. Dis. Clin. North Am. 11, 551–581 (1997).

    Article  CAS  Google Scholar 

  2. Svanborg, C. & Godaly, G. Bacterial virulence in urinary tract infection. Infect. Dis. Clin. North Am. 11, 513–529 (1997).

    Article  CAS  Google Scholar 

  3. Martinez, J.J., Mulvey, M.A., Schilling, J.D., Pinkner, J.S. & Hultgren, S.J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812 (2000).

    Article  CAS  Google Scholar 

  4. Duncan, M.J., Li, G., Shin, J.S., Carson, J.L. & Abraham, S.N. Bacterial penetration of bladder epithelium through lipid rafts. J. Biol. Chem. 279, 18944–18951 (2004).

    Article  CAS  Google Scholar 

  5. Min, G. et al. Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J. Mol. Biol. 317, 697–706 (2002).

    Article  CAS  Google Scholar 

  6. Lewis, S.A. Everything you wanted to know about the bladder epithelium but were afraid to ask. Am. J. Physiol. Renal Physiol. 278, F867–F874 (2000).

    Article  CAS  Google Scholar 

  7. Hu, P. et al. Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am. J. Physiol. Renal Physiol. 283, F1200–F1207 (2002).

    Article  CAS  Google Scholar 

  8. Apodaca, G. Stretch-regulated exocytosis of discoidal vesicles in urinary bladder epithelium. Urology 57, 103–104 (2001).

    Article  CAS  Google Scholar 

  9. Apodaca, G. The uroepithelium: not just a passive barrier. Traffic 5, 117–128 (2004).

    Article  CAS  Google Scholar 

  10. Chen, Y. et al. Rab27b is associated with fusiform vesicles and may be involved in targeting uroplakins to urothelial apical membranes. Proc. Natl. Acad. Sci. USA 100, 14012–14017 (2003).

    Article  CAS  Google Scholar 

  11. Orndorff, P.E. & Falkow, S. Organization and expression of genes responsible for type 1 piliation in Escherichia coli. J. Bacteriol. 159, 736–744 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, E., Truschel, S. & Apodaca, G. Analysis of hydrostatic pressure-induced changes in umbrella cell surface area. Methods 30, 207–217 (2003).

    Article  CAS  Google Scholar 

  13. Burgoyne, R.D. & Morgan, A. Secretory granule exocytosis. Physiol. Rev. 83, 581–632 (2003).

    Article  CAS  Google Scholar 

  14. Truschel, S.T. et al. Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol. Biol. Cell 13, 830–846 (2002).

    Article  CAS  Google Scholar 

  15. Schilling, J.D., Mulvey, M.A., Vincent, C.D., Lorenz, R.G. & Hultgren, S.J. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J. Immunol. 166, 1148–1155 (2001).

    Article  CAS  Google Scholar 

  16. Carbone, M. et al. Cytokine induction in murine bladder tissue by type 1 fimbriated Escherichia coli. Ann. NY Acad. Sci. 963, 332–335 (2002).

    Article  CAS  Google Scholar 

  17. Uehling, D.T., Johnson, D.B. & Hopkins, W.J. The urinary tract response to entry of pathogens. World J. Urol. 17, 351–358 (1999).

    Article  CAS  Google Scholar 

  18. Mulvey, M.A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

    Article  CAS  Google Scholar 

  19. Vergara, J., Zambrano, F., Robertson, J.D. & Elrod, H. Isolation and characterization of luminal membranes from urinary bladder. J. Cell Biol. 61, 83–94 (1974).

    Article  CAS  Google Scholar 

  20. Rodriguez, A., Martinez, I., Chung, A., Berlot, C.H. & Andrews, N.W. cAMP regulates Ca2+-dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes. J. Biol. Chem. 274, 16754–16759 (1999).

    Article  CAS  Google Scholar 

  21. Tardieux, I. et al. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 71, 1117–1130 (1992).

    Article  CAS  Google Scholar 

  22. Andrews, N.W. Living dangerously: how Trypanosoma cruzi uses lysosomes to get inside host cells, and then escapes into the cytoplasm. Biol. Res. 26, 65–67 (1993).

    CAS  PubMed  Google Scholar 

  23. Anderson, J.D., Adams, M.A., Webster, H.M. & Smith, L. Growth properties of mecillinam-resistant bacterial variants in urine. Antimicrob. Agents Chemother. 12, 559–562 (1977).

    Article  CAS  Google Scholar 

  24. Anderson, J.D., Eftekhar, F., Aird, M.Y. & Hammond, J. Role of bacterial growth rates in the epidemiology and pathogenesis of urinary infections in women. J. Clin. Microbiol. 10, 766–771 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Anderson, G.G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

    Article  CAS  Google Scholar 

  26. Eto, D.S., Sundsbak, J.L. & Mulvey, M.A. Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cell. Microbiol. 8, 704–717 (2006).

    Article  CAS  Google Scholar 

  27. Mulvey, M.A., Schilling, J.D. & Hultgren, S.J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69, 4572–4579 (2001).

    Article  CAS  Google Scholar 

  28. Seamon, K.B., Padgett, W. & Daly, J.W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Natl. Acad. Sci. USA 78, 3363–3367 (1981).

    Article  CAS  Google Scholar 

  29. Seamon, K.B. & Daly, J.W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J. Cyclic Nucleotide Res. 7, 201–224 (1981).

    CAS  PubMed  Google Scholar 

  30. Drewes, S.E., George, J. & Khan, F. Recent findings on natural products with erectile-dysfunction activity. Phytochemistry 62, 1019–1025 (2003).

    Article  CAS  Google Scholar 

  31. Wajima, Z. et al. Intravenous colforsin daropate, a water-soluble forskolin derivative, prevents thiamylal-fentanyl-induced bronchoconstriction in humans. Crit. Care Med. 30, 820–826 (2002).

    Article  CAS  Google Scholar 

  32. Meyer, B.H., Stulting, A.A., Muller, F.O., Luus, H.G. & Badian, M. The effects of forskolin eye drops on intra-ocular pressure. S. Afr. Med. J. 71, 570–571 (1987).

    CAS  PubMed  Google Scholar 

  33. Styczynski, J. & Wysocki, M. Ex vivo modulation of response to prednisolone in childhood acute lymphoblastic leukaemia. Br. J. Haematol. 133, 397–399 (2006).

    Article  CAS  Google Scholar 

  34. Abraham, S.N. et al. Protection against Escherichia coli-induced urinary tract infections with hybridoma antibodies directed against type 1 fimbriae or complementary D-mannose receptors. Infect. Immun. 48, 625–628 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Aballay (Department of Molecular Genetics and Microbiology, Duke University Medical Center) for the gift of the S. enterica SL1344 and M. Kuehn (Department of Biochemistry, Duke University Medical Center) for the pKEN-HcRed plasmid; W. Fennell and H. Estrada for their help with electron microscopy; A. Aballay, R. Valdivia and M. Kuehn for helpful discussion; C. Shelburne and C. Kunder for their critical reading of the manuscript. This work was supported by US National Institutes of Health grants R01 AI-35678, R37DK50814 and R21 AI056101.

Author information

Authors and Affiliations

Authors

Contributions

B.L.B. performed the experiments in this work. G.L. produced the GFP-Rab27b–expressing 5637 BECs and the Rab27b knockdown 5637 BECs. J.S. performed the IL-6 ELISA. M.J.D. initiated the laboratory use of the in vitro model of E. coli infection of 5637 BECs. B.L.B, D.Z and S.A. wrote the paper; the other authors read and commented on the manuscript.

Corresponding authors

Correspondence to Brian L Bishop or Soman N Abraham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

E. coli interact with secretory lysosomes of 5637 BECs in vitro. (PDF 387 kb)

Supplementary Fig. 2

E. coli enters BECs through CD63+ vesicles and bypasses the classical endocytic pathway. (PDF 1055 kb)

Supplementary Fig. 3

Loss of intracellular E. coli is not due to BEC lysis or bacterial degradation. (PDF 247 kb)

Supplementary Methods (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, B., Duncan, M., Song, J. et al. Cyclic AMP–regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat Med 13, 625–630 (2007). https://doi.org/10.1038/nm1572

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing