Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Genetic fingerprinting

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alec Jeffreys at age eight.
Figure 2: The minisatellite core sequence.
Figure 3: The first DNA fingerprints.
Figure 4: The first application of DNA fingerprinting—an immigration case.
Figure 5: The first application of DNA profiling—the Enderby murder case.
Figure 6: The identification of Josef Mengele by bone STR typing.

References

  1. Jeffreys, A.J. & Flavell, R.A. A physical map of the DNA regions flanking the rabbit β-globin gene. Cell 12, 429–439 (1977).

    Article  CAS  Google Scholar 

  2. Jeffreys, A.J. & Flavell, R.A. The rabbit β-globin gene contains a large insert in the coding sequence. Cell 12, 1097–1108 (1977).

    Article  CAS  Google Scholar 

  3. Jeffreys, A.J. DNA sequence variants in the Gγ-, Aγ-, δ- and β-globin genes of man. Cell 18, 1–10 (1979).

    Article  CAS  Google Scholar 

  4. Wyman, A.R. & White, R. A highly polymorphic locus in human DNA. Proc. Natl. Acad. Sci. USA 77, 6754–6758 (1980).

    Article  CAS  Google Scholar 

  5. Goodbourn, S.E., Higgs, D.R., Clegg, J.B. & Weatherall, D.J. Molecular basis of length polymorphism in the human zeta-globin gene complex. Proc. Natl. Acad. Sci. USA 80, 5022–5026 (1983).

    Article  CAS  Google Scholar 

  6. Bell, G.I., Selby, M.J. & Rutter, W.J. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295, 31–35 (1982).

    Article  CAS  Google Scholar 

  7. Jeffreys, A.J., Wilson, V. & Thein, S.L. Hypervariable “minisatellite” regions in human DNA. Nature 314, 67–74 (1985).

    Article  CAS  Google Scholar 

  8. Jeffreys, A.J., Wilson, V. & Thein, S.L. Individual-specific 'fingerprints' of human DNA. Nature 316, 76–79 (1985).

    Article  CAS  Google Scholar 

  9. Jeffreys, A.J., Brookfield, J.F.Y. & Semeonoff, R. Positive identification of an immigration test case using DNA fingerprints. Nature 317, 818–819 (1985).

    Article  CAS  Google Scholar 

  10. Wetton, J.H., Carter, R.E., Parkin, D.T. & Walters, D. Demographic study of a wild house sparrow population by DNA fingerprinting. Nature 327, 147–149.

  11. Signer, E.N. et al. DNA fingerprinting Dolly. Nature 394, 329–330 (1998).

    Article  CAS  Google Scholar 

  12. Signer, E.N., Schmidt, C.R. & Jeffreys, A.J. DNA variability and parentage testing in captive Waldrapp ibises. Mol. Ecol. 3, 291–300 (1994).

    Article  CAS  Google Scholar 

  13. Gill, P., Jeffreys, A.J. & Werrett, D.J. Forensic application of DNA 'fingerprints'. Nature 318, 577–579 (1985).

    Article  CAS  Google Scholar 

  14. Wong, Z., Wilson, V., Patel, I., Povey, S. & Jeffreys, A.J. Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann. Hum. Genet. 51, 269–288 (1987).

    Article  CAS  Google Scholar 

  15. Wambaugh, J. The Blooding (Bantam, London, 1989).

    Google Scholar 

  16. Lander, E.S. DNA fingerprinting on trial. Nature 339, 501–505 (1989).

    Article  CAS  Google Scholar 

  17. Litt, M. & Luty, J.A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397–401 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Weber, J.L. & May, P.E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jeffreys, A.J., Allen, M., Hagelberg, E. & Sonnberg, A. Identification of the skeletal remains of Josef Mengele by DNA analysis. Forensic Sci. Int. 56, 65–76 (1992).

    Article  CAS  Google Scholar 

  20. Edwards, A., Civitello, A., Hammond, H.A. & Caskey, C.T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet. 49, 746–756 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kimpton, C.P. et al. Automated DNA profiling employing multiplex amplification of short tandem repeat loci. PCR Methods Appl. 3, 13–22 (1993).

    Article  CAS  Google Scholar 

  22. van Oorschot, R.A.H. and Jones, M.K. DNA fingerprints from fingerprints. Nature 387, 767 (1997).

    Article  CAS  Google Scholar 

  23. Jobling, M.A. & Gill, P. Encoded evidence: DNA in forensic analysis. Nat. Rev. Genet. 5, 739–751 (2004).

    Article  CAS  Google Scholar 

  24. Jobling, M.A. In the name of the father: surnames and genetics. Trends Genet. 17, 353–357 (2001).

    Article  CAS  Google Scholar 

  25. Williamson, R. & Duncan, R. DNA testing for all. Nature 418, 585–586 (2002).

    Article  CAS  Google Scholar 

  26. Jeffreys, A.J. et al. Human minisatellites, repeat DNA instability and meiotic recombination. Electrophoresis 20, 1665–1675 (1999).

    Article  CAS  Google Scholar 

  27. Kauppi, L., Jeffreys, A.J. & Keeney, S. Where the crossovers are: recombination distributions in mammals. Nat. Rev. Genet. 5, 413–424 (2004).

    Article  CAS  Google Scholar 

  28. Dubrova, Y.E. Germline mutation induction at mouse and human tandem repeat DNA loci. Adv. Exp. Med. Biol. 518, 115–129 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I extend a huge thanks to my father and late mother for a great childhood and for enduring endless experimental misery, also to my wife and daughters for constant support and patience. There are too many friends and colleagues who have contributed over the years to name individually, but a special thanks must go to V. Wilson for her key work in the initial phases of developing DNA fingerprinting and to I. Patel for starting the first mass application of DNA testing, in immigration disputes. I am greatly indebted to the late G. Roderick of the Lister Institute of Preventive Medicine whose patience, friendship and expertise proved so valuable during the early phases of commercializing DNA testing, and to all my friends at Cellmark Diagnostics who turned a bit of academic eccentricity into something truly of value. And finally, I extend my gratitude to the Lasker Foundation that has done me such a huge honor.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffreys, A. Genetic fingerprinting. Nat Med 11, 1035–1039 (2005). https://doi.org/10.1038/nm1005-1035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1005-1035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing