Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modern science versus the stigma of obesity

Obese people, who are already subject to adverse health effects, are additionally victimized by a social stigma predicated on the Hippocratic nostrum that weight can be controlled by 'deciding' to eat less and exercise more. This simplistic notion is at odds with substantial scientific evidence illuminating a precise and powerful biologic system that maintains body weight within a relatively narrow range. Voluntary efforts to reduce weight are resisted by potent compensatory biologic responses. This article will review some of this evidence, together with promising avenues of research. Further progress in understanding and treating obesity will come not from repetition of anachronistic preconceptions but rather from the rigorous scientific approach that has driven advances in so many other areas of medicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leptin resistance and obesity.
Figure 2: The neural circuit regulating food intake and body weight.
Figure 3: Biochemical pathway regulating cellular fatty acid metabolism and energy expenditure, showing the mechanism underlying increased fatty acid oxidation.

References

  1. Bray, G.A. Obesity: Historical development of scientific and cultural ideas. Int. J. Obes. 14, 909–926 (1990).

    CAS  PubMed  Google Scholar 

  2. Buchwald, H. & Knatterud, M.E. Morbid obesity: perceptions of character and comorbidities in Falstaff. Obes. Surg. 10, 402–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Allison, D. et al. The heritability of body mass index among an international sample of monozygotic twins reared apart. Int. J. Obes. Relat. Metab. Disord. 20, 501–506 (1996).

    CAS  PubMed  Google Scholar 

  4. Stunkard, A.J., Harris, J.R., Pedersen, N.L. & McClearn, G.E. The body-mass index of twins who have been reared apart. N. Engl. J. Med. 322, 1483–1487 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Stunkard, A.J., Foch, T.T. & Hrubec, Z. A twin study of human obesity. J. Am. Med. Assoc. 256, 51–54 (1986).

    Article  CAS  Google Scholar 

  6. Friedman, J.M. A war on obesity, not the obese. Science 299, 856–858 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Flier, J.S. Obesity wars: molecular progress confronts an expanding epidemic. Cell 116, 337–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. O'Rahilly, S., Farooqi, I.S., Yeo, G. & Challis, B.G. Minireview: Human obesity—lessons from monogenic disorders. Endocrinology 144, 3757–3764 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Leibel, R.L., Rosenbaum, M. & Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 332, 621–628 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Wadden, T.A. et al. Short- and long-term changes in serum leptin dieting obese women: effects of caloric restriction and weight loss. J. Clin. Endocrinol. Metab. 83, 214–218 (1998).

    CAS  PubMed  Google Scholar 

  11. Wadden, T.A. Treatment of obesity by moderate and severe caloric restriction. Results of clinical research trials. Ann. Intern. Med. 119, 688–693 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Farooqi, I. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Farooqi, I.S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flegal, K.M., Carroll, M.D., Ogden, C.L. & Johnson, C.L. Prevalence and trends in obesity among US adults, 1999-2000. J. Am. Med. Assoc. 288, 1723–1727 (2002).

    Article  Google Scholar 

  15. Harris, T. et al. Body mass index and mortality among nonsmoking older persons: the Framingham Heart Study. J. Am. Med. Assoc. 259, 1520–1524 (1988).

    Article  CAS  Google Scholar 

  16. Kopelman, P.G. Obesity as a medical problem. Nature 404, 635–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Hetherington, A.W. & Ranson, S.W. The spontaneous activity and food intake of rats with hypothalamic lesions. Am. J. Physiol. 136, 609–617 (1942).

    Article  CAS  Google Scholar 

  18. Kandel, E.R., Schwartz, J.H. & Jessell, T. Principles of Neural Science, 998–1003 (McGraw-Hill, New York, 2000).

    Google Scholar 

  19. Friedman, J.M. & Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Montague, C.T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Farooqi, I. et al. Partial leptin deficiency and human adiposity. Nature 414, 34–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Maffei, M. et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1, 1155–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Ahima, R.S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Shimomura, I., Hammer, R., Ikemoto, S., Brown, M. & Goldstein, J. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Oral, E.A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Oral, E.A. et al. Effect of leptin replacement on pituitary hormone regulation in patients with severe lipodystrophy. J. Clin. Endocrinol. Metab. 87, 3110–3117 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Petersen, K.F. et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345–1350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heymsfield, S. et al. Recombinant leptin for weight loss in obese and lean adults. J. Am. Med. Assoc. 282, 1568–1575 (1999).

    Article  CAS  Google Scholar 

  29. Halaas, J.L. et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl. Acad. Sci. USA 94, 8878–8883 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minokoshi, Y. et al. Leptin stimulates fatty acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Fei, H. et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc. Natl. Acad. Sci. USA 94, 7001–7005 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glazer, G. Long-term pharmacotherapy of obesity 2000: a review of efficacy and safety. Arch. Intern. Med. 161, 1814–1824 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Heisler, L.K. et al. Activation of central melanocortin pathways by fenfluramine. Science 297, 609–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Seeley, R.J. et al. Melanocortin receptors in leptin effects. Nature 390, 349 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Erickson, J.C., Clegg, K.E. & Palmiter, R.D. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381, 415–418 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Obici, S. & Rossetti, L. Minireview: Nutrient sensing and the regulation of insulin action and energy balance. Endocrinology 144, 5172–5178 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Niswender, K.D. et al. Key enzymes in leptin-induced anorexia. Nature 413, 794–795 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Li, C. & Friedman, J. Leptin receptor activation of SH2 domain protein tyrosone phosphatase 2 modulates ob receptor signal transduction. Proc. Natl. Acad. Sci. USA 96, 9677–9682 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao, A.Z., Huan, J.N., Gupta, S.K., Pal, R. & Sahu, A. A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat. Neurosci. 5, 727–728 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Vaisse, C. et al. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat. Genet. 14, 95–97 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Bates, S.H. et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Zabolothy, J.M. et al. PTP1B regulates leptin signal transduction in vivo. Dev. Cell 2, 489–495 (2002).

    Article  Google Scholar 

  43. Bjorbaek, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E. & Flier, J.S. Identification of SOC-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Yeo, G. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Pinto, S. et al. Rapid re-wiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. West, D.B., Boozer, C.N., Moody, D.L. & Atkinson, R.L. Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 262, R1025–R1032 (1992).

    CAS  PubMed  Google Scholar 

  47. Ogus, S., Ke, Y., Qiu, J., Wang, B. & Chehab, F.F. Hyperleptinemia precipitates diet-induced obesity in transgenic mice overexpressing leptin. Endocrinology 144, 2865–2869 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Fulton, S., Woodside, B. & Shizgal, P. Modulation of brain reward circuitry by leptin. Science 287, 125–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Saper, C.B., Chou, T.C. & Elmquist, J.K. The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. DeFalco, J. et al. Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291, 2608–2613 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Schwartz, M.W., Peskind, E., Raskind, M., Boyko, E.J. & Porte, D. Jr. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat. Med. 2, 589–593 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Caro, J.F. et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348, 159–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Banks, W.A. & Farrell, C.L. Impaired transport of leptin across the blood-brain barrier in obesity is acquired and reversible. J. Physiol. 285, E10–E15 (2003).

    CAS  Google Scholar 

  54. Li, C., Ioffe, E., Fidahusein, N., Connolly, E. & Friedman, J.M. Absence of soluble leptin receptor in plasma from dbPas/dbPas and other db/db mice. J. Biol. Chem. 273, 10078–10082 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Weintraub, M., Hasday, J.D., Mushlin, A.I. & Lockwood, D.H. A double-blind clinical trial in weight control. Use of fenfluramine and phentermine alone and in combination. Arch. Intern. Med. 144, 1143–1148 (1984).

    Article  CAS  PubMed  Google Scholar 

  56. Heal, D.J., Cheetham, S.C., Prow, M.R., Martin, K.F. & Buckett, W.R. A comparison of the effects on central 5-HT function of sibutramine hydrochloride and other weight-modifying agents. Br. J. Pharmacol. 125, 301–308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tecott, L.H. et al. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374, 542–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Lavoisier, A.L. & DeLaplace, P.S. Memoir on heat; Read to the Royal Academy of Sciences, 28 June 1783. Obes. Res. 2, 189–203 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Rubner, M. Die Quelle der thierischen Warme. Z. Biol. 30, 73–142 (1894).

    Google Scholar 

  61. Weigle, D.S. Appetite and the regulation of body composition. FASEB J. 8, 302–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Allison, D.B., Heshka, S., Sepulveda, D. & Heymsfield, S.B. Counting calories—caveat emptor. J. Am. Med. Assoc. 270, 1454–1456 (1993).

    Article  CAS  Google Scholar 

  63. Ravussin, E. et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N. Engl. J. Med. 318, 467–472 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. Bouchard, C. et al. The response to long-term overfeeding in identical twins. N. Engl. J. Med. 322, 1477–1482 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Levine, J.A., Eberhardt, N.L. & Jensen, M.D. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283, 212–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Brolin, R.E. Bariatric surgery and long-term control of morbid obesity. J. Am. Med. Assoc. 288, 2793–2796 (2002).

    Article  Google Scholar 

  67. Halaas, J.L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Bultman, S.J., Michaud, E.J. & Woychik, R.P. Molecular characterization of the mouse agouti locus. Cell 71, 1195–1204 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Smith, S. et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nat. Genet. 25, 87–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Cohen, P. et al. Role for stearoyl-CoA desaturase-1 in leptin mediated weight loss. Science 297, 240–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, Y.X. et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Bachman, E.S. et al. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Jackson, R.S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 16, 303–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Barsh, G.S., Farooqi, I.S. & O'Rahilly, S. Genetics of body-weight regulation. Nature 404, 644–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Neel, J.V. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 14, 353–362 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks E. Ravussin, Bruce Schneider and S. Heymesfield for critical comments, and S. Korres for assistance in preparing this manuscript. This work was supported by a grant from the US National Institute of Diabetes and Digestive and Kidney Diseases. The author is an inventor listed on the patent for leptin and might receive a portion of the royalties, through a Rockefeller University licensing agreement with Amgen, should leptin become a commercial product.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, J. Modern science versus the stigma of obesity. Nat Med 10, 563–569 (2004). https://doi.org/10.1038/nm0604-563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0604-563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing