Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modeling the emergence of the 'hot zones': tuberculosis and the amplification dynamics of drug resistance

Abstract

'Hot zones' are areas that have >5% prevalence (or incidence) of multidrug-resistant tuberculosis (MDRTB). We present a new mathematical model (the amplifier model) that tracks the emergence and evolution of multiple (pre-MDR, MDR and post-MDR) strains of drug-resistant Mycobacterium tuberculosis. We reconstruct possible evolutionary trajectories that generated hot zones over the past three decades, and identify the key causal factors. Results are consistent with recently reported World Health Organization (WHO) data. Our analyses yield three important insights. First, paradoxically we found that areas with programs that successfully reduced wild-type pansensitive strains often evolved into hot zones. Second, some hot zones emerged even when MDR strains were substantially less fit (and thus less transmissible) than wild-type pansensitive strains. Third, levels of MDR are driven by case-finding rates, cure rates and amplification probabilities. To effectively control MDRTB in the hot zones, it is essential that the WHO specify a goal for minimizing the amplification probability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstructed evolutionary trajectories.
Figure 2: Comparison of theoretical and empirical (WHO) data.
Figure 3: Evolutionary relationships and predictions.
Figure 4: Results of multivariate sensitivity analysis.

Similar content being viewed by others

References

  1. Iseman, M.D. Evolution of drug-resistant tuberculosis: a tale of two species. Proc. Natl. Acad. Sci. USA 91, 2428–2429 (1994).

    Article  CAS  Google Scholar 

  2. Iseman, M.D. Tuberculosis therapy: past, present and future. Eur. Respir. J. 36, 87s–94s (2002).

    Article  CAS  Google Scholar 

  3. Reichman, L. & Tanne, J.H. Timebomb: The Global Epidemic of Multi-Drug-Resistant Tuberculosis (McGraw-Hill, New York, 2002).

    Google Scholar 

  4. Dye, C., Espinal, M.A., Watt, C.J., Mbiaga, C. & Williams, B.G. Worldwide incidence of multidrug-resistant tuberculosis. J. Infect. Dis. 185, 1197–1202 (2002).

    Article  Google Scholar 

  5. Espinal, M.A. et al. Global trends in resistance to antituberculosis drugs. World Health Organization—International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance. N. Engl. J. Med. 344, 1294–1303 (2001).

    Article  CAS  Google Scholar 

  6. Pablos-Méndez, A. et al. Anti-tuberculosis drug resistance in the world. Report 1 (World Health Organization, Geneva, 2000).

    Google Scholar 

  7. Farmer, P.E., Reichman, L. & Iseman, M.D. Report: The global impact of drug-resistant tuberculosis (Harvard Medical School, Open Society Institute, Cambridge, Massachusetts, USA, 1999).

    Google Scholar 

  8. Espinal, M.A. et al. Anti-tuberculosis drug resistance in the world. Report no. 2: Prevalence and trends (World Health Organization, Geneva, 2003).

    Google Scholar 

  9. Farmer, P.E. et al. The dilemma of MDR-TB in the global era. Int. J. Tuberc. Lung. Dis. 2, 869–876 (1998).

    CAS  PubMed  Google Scholar 

  10. Mitnick, C. et al. Community-based therapy for multidrug-resistant tuberculosis in Lima, Peru. N. Engl. J. Med. 348, 119–128 (2003).

    Article  Google Scholar 

  11. Blower, S.M. & Daley, C.L. Problems and solutions for the Stop TB partnership. Lancet Infect. Dis. 2, 374–376 (2002).

    Article  CAS  Google Scholar 

  12. Espinal, M.A. Time to abandon the standard retreatment regimen with first-line drugs for failures of standard treatment. Int. J. Tuberc. Lung. Dis. 7, 607–608 (2003).

    PubMed  Google Scholar 

  13. Blower, S.M., Small, P.M. & Hopewell, P.C. Control strategies for tuberculosis epidemics: new models for old problems. Science 273, 497–500 (1996).

    Article  CAS  Google Scholar 

  14. Blower, S.M. & Gerberding, J.L. Understanding, predicting and controlling the emergence of drug-resistant tuberculosis: a theoretical framework. J. Mol. Med. 76, 624–636 (1998).

    Article  CAS  Google Scholar 

  15. Blower, S.M., Porco, T.C. & Lietman, T. Tuberculosis: the evolution of antibiotic resistance and the design of epidemic control strategies. in Mathematical Models in Medical and Health Sciences (eds. Horn, Simonett & Webb) (Vanderbilt University Press, Nashville, TN, 1998).

    Google Scholar 

  16. Blower, S.M., Koelle, K. & Lietman, T. Antibiotic resistance—to treat... Nat. Med. 5, 358 (1999).

    Article  CAS  Google Scholar 

  17. Castillo-Chavez, C. & Feng, Z. To treat or not to treat: the case of tuberculosis. J. Math. Biol. 35, 629–656 (1997).

    Article  CAS  Google Scholar 

  18. Dye, C. & Williams, B.G. Criteria for the control of drug-resistant tuberculosis. Proc. Natl. Acad. Sci. USA 97, 8180–8185 (2000).

    Article  CAS  Google Scholar 

  19. Hopewell, P.C. Tuberculosis control: how the world has changed since 1990. Bull. World Health Organ. 80, 427 (2002).

    PubMed  PubMed Central  Google Scholar 

  20. Frieden, T., Sterling, T., Munsiff, S., Watt, C.J. & Dye, C. Tuberculosis. Lancet 362, 887–899 (2003).

    Article  Google Scholar 

  21. Blower, S.M. & Dowlatabadi, H. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Inter. Stat. Rev. 2, 229–243 (1994).

    Article  Google Scholar 

  22. Blower, S.M. et al. The intrinsic transmission dynamics of tuberculosis epidemics. Nat. Med. 1, 815–821 (1995).

    Article  CAS  Google Scholar 

  23. Sanchez, E. & Blower, S.M. Uncertainty and sensitivity analysis of the basic reproductive rate. Tuberculosis as an example. Am. J. Epidemiol. 145, 1127–1137 (1997).

    Article  CAS  Google Scholar 

  24. Porco, T.C. & Blower, S.M. Quantifying the intrinsic transmission dynamics of tuberculosis. Theo. Pop. Bio. 54, 117–132 (1998).

    Article  CAS  Google Scholar 

  25. Blower, S.M., Porco, T.C. & Darby, G. Predicting and preventing the emergence of antiviral drug resistance in HSV-2. Nat. Med. 4, 673–678 (1998).

    Article  CAS  Google Scholar 

  26. Bankes, S. Tools and techniques for developing policies for complex and uncertain systems. Proc. Natl. Acad. Sci. USA 99 (Suppl. 3), 7263–7266 (2002).

    Article  CAS  Google Scholar 

  27. Elzinga, G., Raviglione, M.C. & Maher, D. Scale up: meeting targets in global tuberculosis control. Lancet 363, 814–819 (2004).

    Article  Google Scholar 

  28. Mukherjee, J.S. et al. Programmes and principles in treatment of multidrug-resistant tuberculosis. Lancet 363, 474–481 (2004).

    Article  Google Scholar 

  29. Lietman, T. & Blower, S.M. The potential impact of tuberculosis vaccines as epidemic control agents. Clin. Infect. Dis. 30, S316–S322 (2000).

    Article  Google Scholar 

  30. Porco, T.C., Small, P.M. & Blower, S.M. Amplification dynamics: Predicting the effect of HIV on tuberculosis outbreaks. J. Acquir. Immune Defic. Syndr. 28, 437–444 (2001).

    Article  CAS  Google Scholar 

  31. Ziv, E., Daley, C.L. & Blower, S.M. Early therapy for latent tuberculosis infection. Am. J. Epidemiol. 153, 381–385 (2001).

    Article  CAS  Google Scholar 

  32. Sterling, T., Lehmann, H. & Frieden, T. Impact of DOTS compared with DOTS-plus on multidrug resistant tuberculosis and tuberculosis deaths: decision analysis. BMJ 326, 574 (2003).

    Article  Google Scholar 

  33. Centers for Disease Control. Primary multidrug-resistant tuberculosis—Ivanovo Oblast, Russia, 1999. MMWR 48, 661–663 (1999).

  34. Migliori, G. et al. Frequency of recurrence among MDR-TB cases 'successfully' treated with standardised short-course chemotherapy. Int. J. Tuberc. Lung. Dis. 6, 858–864 (2002).

    CAS  PubMed  Google Scholar 

  35. Suarez, P. et al. Feasibility and cost-effectiveness of standardised second-line drug treatment for chronic tuberculosis patients: a national cohort study in Peru. Lancet 359, 1980–1989 (2002).

    Article  Google Scholar 

  36. Cohen, T., Sommers, B. & Murray, M. The effect of drug resistance on the fitness of Mycobacterium tuberculosis. Lancet Infect. Dis. 3, 13–21 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge L. Ma for coding and assistance with numerical analyses, R. Smith for technical discussions and E. Bodine for editorial assistance. S.M.B. acknowledges financial support from NIAID/NIH (R01 AI041935). T.C. acknowledges financial support from the National Science Foundation through grant DMS-0206733. S.M.B. is extremely grateful to P. Farmer and to J. Kim for many discussions, over many years, of the transmission dynamics of MDRTB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally M Blower.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blower, S., Chou, T. Modeling the emergence of the 'hot zones': tuberculosis and the amplification dynamics of drug resistance. Nat Med 10, 1111–1116 (2004). https://doi.org/10.1038/nm1102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing