Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Asymmetric crustal growth on the Moon indicated by primitive farside highland materials

Subjects

Abstract

The Moon’s nearside and farside differ in topography1, crustal thickness2, mare volcanic activity3 and elemental concentrations4. The origin of this dichotomy is still unclear5,6,7. It is also unknown whether the characteristics of the oldest crust, the anorthositic lunar highlands, reflect a different magmatic evolution of nearside and farside crust. Based on analyses of nearside highland rocks8,9, it has been suggested that nearside crustal growth occurred from an evolved, iron-rich magma ocean10, but information from the farside highlands is lacking. Here we apply an empirical algorithm to lunar reflectance spectra11 from the Kaguya Spectral Profiler and report that magnesium contents relative to iron of primitive crustal highland rocks on the farside are higher than on the nearside. Our findings indicate that the farside crust consists of rocks that crystallized from less-evolved magma than the nearside crust. We conclude that the lunar dichotomy is directly linked to crystallization of the magma ocean and suggest that the composition of the magma ocean was more primitive at the time of crustal growth than previously estimated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mafic mineral abundance (vol.%) of the lunar highlands.
Figure 2: Mg# of the lunar highlands with representative spectra and example of spatial trend.
Figure 3: Mg# histograms of different data sources.
Figure 4: Plausible dichotomic crustal growth mechanism of the lunar highland crust.

Similar content being viewed by others

References

  1. Kaula, W. M., Schubert, G., Lingenfelter, E., Sjogren, W. L. & Wollenhaupt, R. Apollo laser altimetry and inferences as to lunar structure. Proc. Lunar Planet. Sci. Conf. V, 3049–3058 (1974).

    Google Scholar 

  2. Zuber, M. T., Smith, D. E., Lemoine, F. G. & Neumann, G. A. The shape and internal structure of the Moon from the Clementine mission. Science 266, 1839–1843 (1994).

    Article  Google Scholar 

  3. Head, J. W. & Wilson, L. Lunar mare volcanism: Stratigraphy, eruption, conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta 56, 2155–2175 (1992).

    Article  Google Scholar 

  4. Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res. 105, 4197–4216 (2000).

    Article  Google Scholar 

  5. Shearer, C. K. et al. New Views of the Moon Vol. 60, Ch. 2, 365–518 (The Mineralogical Society of America, 2006).

    Book  Google Scholar 

  6. Loper, D. E. & Werner, C. L. On lunar asymmetries 1. Tilted convection and crustal asymmetry. J. Geophys. Res. 107, 5046 (2002).

    Article  Google Scholar 

  7. Wasson, J. T. & Warren, P. H. Contribution of the mantle to the lunar asymmetry. Icarus 44, 752–771 (1980).

    Article  Google Scholar 

  8. Wood, J. A., Marvin, U. B., Powell, B. N. & Dickey, J. S. Jr Lunar anorthosites and a geophysical model of the moon. Proc. Lunar Planet. Sci. Conf. 1, 965–988 (1970).

    Google Scholar 

  9. Warren, P. H. A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. Am. Mineral. 78, 360–376 (1993).

    Google Scholar 

  10. Warren, P. H. Lunar anorthosites and the magma-ocean plagioclase-flotation hypothesis: Importance of FeO enrichment in the parent magma. Am. Mineral. 75, 46–58 (1990).

    Google Scholar 

  11. Matsunaga, T. et al. Discoveries on the lithology of lunar crater central peaks by SELENE Spectral Profiler. Geophys. Res. Lett. 35, L23201 (2008).

    Article  Google Scholar 

  12. Snyder, G. A., Taylor, L. A. & Neal, C. R. A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992).

    Article  Google Scholar 

  13. Wilhelms, D. E. The Geologic History of the Moon US Geological Survey Professional Paper 1348 (USGS, 1987).

  14. Garrick-Bethell, I., Nimmo, F. & Wieczorek, M. A. Structure and formation of the lunar farside highlands. Science 330, 949–951 (2010).

    Article  Google Scholar 

  15. Jutz, M. & Asphaug, E. Forming the lunar farside highlands by accretion of a companion moon. Nature 476, 69–72 (2011).

    Article  Google Scholar 

  16. Korotev, L. R., Jolliff, B. L., Zeigler, R. A., Jeffrey, G. J. & Haskin, L. A. Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim. Cosmochim. Acta 67, 4895–4923 (2003).

    Article  Google Scholar 

  17. Takeda, H. et al. Magnesian anorthosites and a deep crustal rock from the farside crust of the Moon. Earth Planet. Sci. Lett. 247, 171–184 (2006).

    Article  Google Scholar 

  18. McCallum, I. S. A new view of the Moon in light of data from Clementine and Prospector missions. Earth Moon Planets 85–86, 253–269 (2001).

    Google Scholar 

  19. Lindstrom, M. M., Knapp, S. A., Shervais, J. W. & Taylor, L. A. Magnesian anorthosites and associated troctolites and Dunitc in Apollo 14 breccias. Proc. Lunar Planet. Sci. Conf. 13, C41–C49.

  20. Prettyman, T. H. et al. Elemental composition of the lunar surface: Analysis of γ ray spectroscopy data from Lunar Prospector. J. Geophys. Res. 111, E12007 (2006).

    Article  Google Scholar 

  21. Denevi, B. W., Lucey, P. G. & Sherman, S. B. Radiative transfer modeling of near-infrared spectra of lunar mare soils: Theory and measurement. J. Geophys. Res. 113, E02003 (2008).

    Article  Google Scholar 

  22. McKay, D. S. et al. Apollo16 regolith breccias: Characterization and evidence for early formation in the mega-regolith. Proc. Lunar Planet. Sci. Conf. 16, D277–D303 (1970).

    Google Scholar 

  23. Kobayashi, S. et al. The lowest thorium region on the lunar surface imaged by Kaguya γ-ray spectrometer. Lunar Planet. Sci. 41, abstr. 1975 (2010).

    Google Scholar 

  24. Ishihara, Y. et al. Crustal thickness of the Moon: Implications for farside basin structures. Geophys. Res. Lett. 36, L19202 (2009).

    Article  Google Scholar 

  25. Tompkins, S. & Pieters, C. M. Mineralogy of the lunar crust: Results from Clementine. Meteorit. Planet. Sci. 34, 25–41 (1999).

    Article  Google Scholar 

  26. Korotev, R. http://www.meteorites.wustl.edu/lunar/moon_meteorites_list_alumina.htm.

  27. Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).

    Article  Google Scholar 

  28. Hartmann, W. K. & Davis, D. R. Satellite-sized planetesimals and lunar origin. Icarus 24, 504–515 (1975).

    Article  Google Scholar 

  29. Ohtake, M. et al. The global distribution of pure anorthosite on the Moon. Nature 461, 236–240 (2009).

    Article  Google Scholar 

  30. Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 1–4 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Kaguya project team and the Lunar Imager/SpectroMeter team members, especially R. Nakamura for useful discussions. Our work was supported by Grants-in-Aid for Scientific Research (KAKENHI; 22540443).

Author information

Authors and Affiliations

Authors

Contributions

T. Matsunaga, S.Y., Y.O. and Y.Y. calibrated Spectral Profiler data. M.O. conducted data analyses. M.O., H.T., T. Matsunaga, Y.Y., J.H., T. Morota, T.H., R.N., Y.K., K.S. and P.G.L. contributed to writing and improving the paper. All the authors contributed to discussions of the results.

Corresponding author

Correspondence to Makiko Ohtake.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1830 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtake, M., Takeda, H., Matsunaga, T. et al. Asymmetric crustal growth on the Moon indicated by primitive farside highland materials. Nature Geosci 5, 384–388 (2012). https://doi.org/10.1038/ngeo1458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing