Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simultaneous estimation of global present-day water transport and glacial isostatic adjustment

Abstract

Global water transport between oceans and continents during the transition from glacial to interglacial times has been enormous. The viscoelastic solid Earth has been responding to this unloading of large ice masses with a rise of the land masses, in a process termed glacial isostatic adjustment. In addition, significant changes in the land/ocean water distribution occur at present. As both present-day changes in the ice/water thickness and glacial isostatic adjustment affect space geodetic measurements, it is difficult to untangle the relative contributions of these two processes. Here we combine gravity measurements and geodetic data of surface movement with a data-assimilating model of ocean bottom pressure to simultaneously estimate present-day water transport and glacial isostatic adjustment. We determine their separate contributions to movements in the geocentre, which occur in response to changes in the Earth’s mass distribution, with uncertainties below 0.1 mm yr−1. According to our estimates, mass losses between 2002 and 2008 in Greenland, Alaska/Yukon and West Antarctica are 104±23, 101±23 and 64±32 Gt yr−1, respectively. Our estimates of glacial isostatic adjustment indicate a large geocentre velocity of −0.72±0.06 mm yr−1 in the polar direction. We conclude that a significant revision of the present estimates of glacial isostatic adjustments and land–ocean water exchange is required.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Average global PDMT estimates including the atmospheric mass in thickness of water equivalent.
Figure 2: Unfiltered GIA geoid height trends.

References

  1. Cox, C. M. & Chao, B. F. Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science 297, 831–833 (2002).

    Article  Google Scholar 

  2. Cheng, M. & Tapley, B. D. Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. 109, B09402 (2004).

    Article  Google Scholar 

  3. Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

    Article  Google Scholar 

  4. Velicogna, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett. 36, L19503 (2009).

    Article  Google Scholar 

  5. Chen, J. L., Wilson, C. R., Blankenship, D. & Tapley, B. D. Accelerated Antarctic ice loss from satellite gravity measurements. Nature Geosci. 2, 859–862 (2009).

    Article  Google Scholar 

  6. Tamisiea, M. E., Leuliette, E. W., Davis, J. L. & Mitrovica, J. X. Constraining hydrological and cryospheric mass flux in southern Alaska using space-based gravity measurements. Geophys. Res. Lett. 32, L20501 (2005).

    Article  Google Scholar 

  7. Luthcke, S. B. et al. Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J. Glaciol. 54, 767–777 (2008).

    Article  Google Scholar 

  8. Luthcke, S. B. et al. Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314, 1286–1289 (2006).

    Article  Google Scholar 

  9. Dowdeswell, J. A., Benham, T. J., Strozzi, T. & Hagen, J. O. Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet, Svalbard. J. Geophys. Res. 113, F03022 (2008).

    Article  Google Scholar 

  10. Thomas, R., Frederick, E., Krabill, W., Manizade, S. & Martin, C. Progressive increase in ice loss from Greenland. Geophys. Res. Lett. 33, L10503 (2006).

    Google Scholar 

  11. Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

    Article  Google Scholar 

  12. Wingham, D. J., Shepherd, A., Muir, A. & Marshall, G. J. Mass balance of the Antarctic ice sheet. Phil. Trans. R. Soc. A 364, 1627–1635 (2006).

    Article  Google Scholar 

  13. Smith, B. E., Bentley, C. R. & Raymond, C. F. Recent elevation changes on the ice streams and ridges of the Ross Embayment from ICESat crossovers. Geophys. Res. Lett. 32, L21S09 (2005).

    Google Scholar 

  14. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  Google Scholar 

  15. Ivins, E. R. & James, T. S. Antarctic glacial isostatic adjustment: A new assessment. Antarct. Sci. 17, 537–549 (2005).

    Article  Google Scholar 

  16. Vermeersen, L. L. A. & Sabadini, R. A new class of stratified viscoelastic models by analytical techniques. Geophys. J. Int. 129, 531–570 (1997).

    Article  Google Scholar 

  17. Wahr, J., Wingham, D. & Bentley, C. A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. J. Geophys. Res. 105, 16279–16294 (2000).

    Article  Google Scholar 

  18. Larsen, C. F., Motyka, R. J., Freymueller, J. T., Echelmeyer, K. A. & Ivins, E. R. Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth Planet. Sci. Lett. 237, 548–560 (2005).

    Article  Google Scholar 

  19. Wieczerkowski, K., Mitrovica, J. X. & Wolf, D. A revised relaxation-time spectrum for Fennoscandia. Geophys. J. Int. 139, 69–86 (1999).

    Article  Google Scholar 

  20. James, T. S., Gowan, E. J., Wada, I. & Wang, K. Viscosity of the asthenosphere from glacial isostatic adjustment and subduction dynamics at the northern Cascadia subduction zone, British Columbia, Canada. J. Geophys. Res. 114, B04405 (2009).

    Article  Google Scholar 

  21. Tamisiea, M. E., Mitrovica, J. X. & Davis, J. L. GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science 316, 881–883 (2007).

    Article  Google Scholar 

  22. Trupin, A. S., Meier, M. F. & Wahr, J. M. Effects of melting glaciers on the Earth’s rotation and gravitational field: 1965–1984. Geophys. J. Int. 108, 1–15 (1992).

    Article  Google Scholar 

  23. Greff-Lefftz, M. Secular variation of the geocenter. J. Geophys. Res. 105, 25685–25692 (2000).

    Article  Google Scholar 

  24. Klemann, V. & Martinec, Z. Contribution of glacial-isostatic adjustment to the geocenter motion. Tectonophysics 10.1016/j.tecto.2009.08.031 (2009, in the press).

  25. Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B. & Boucher, C. ITRF2005: A new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters. J. Geophys. Res. 112, B09401 (2007).

    Article  Google Scholar 

  26. Wu, X., Blom, R. G., Ivins, E. R., Oyafuso, F. A. & Zhong, M. Improved inverse and probabilistic methods for geophysical applications of GRACE gravity data. Geophys. J. Int. 177, 865–877 (2009).

    Article  Google Scholar 

  27. Fukumori, I., Raghunath, R., Fu, L. & Chao, Y. Assimilation of TOPEX/POSEIDON data into a global ocean circulation model: How good are the results? J. Geophys. Res. 104, 25647–25665 (1999).

    Article  Google Scholar 

  28. Benjamin, D., Wahr, J., Ray, R. D., Egbert, G. D. & Desai, S. D. Constraints on mantle anelasticity from geodetic observations, and implications for the J2 anomaly. Geophys. J. Int. 165, 3–16 (2006).

    Article  Google Scholar 

  29. Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).

    Article  Google Scholar 

  30. Shepherd, A. & Wingham, D. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315, 1529–1532 (2007).

    Article  Google Scholar 

  31. Trenberth, K. & Smith, L. The mass of the atmosphere: A constraint on global analyses. J. Clim. 18, 864–875 (2005).

    Article  Google Scholar 

  32. Leuliette, E. W. & Miller, L. Closing the sea level rise budget with altimetry, Argo, and GRACE. Geohys. Res. Lett. 36, L04608 (2009).

    Google Scholar 

  33. Steele, M. & Ermold, W. Steric sea level change in the Northern Seas. J. Clim. 20, 403–417 (2007).

    Article  Google Scholar 

  34. Sparrenbom, C. J., Bennike, O., Bjorck, S. & Lambeck, K. Relative sea-level changes since 15,000 cal. yr BP in the Nanortalik area, southern Greenland. J. Quat. Sci. 21, 29–48 (2006).

    Article  Google Scholar 

  35. Wu, X., Heflin, M. B., Ivins, E. R. & Fukumori, I. Seasonal and interannual global surface mass variations from multisatellite geodetic data. J. Geophys. Res. 111, B09401 (2006).

    Google Scholar 

Download references

Acknowledgements

Part of this work was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA), and financially supported through NASA’s International Polar Year, GRACE Science Team and MEaSUREs (through a project led by V. Zlotnicki in JPL) programmes. We thank Z. Altamimi, S. Bettadpur, J. Davis, I. Fukumori, F. Landerer, J. Ries, R. Riva, D. Salstein, M. Tamisiea and J. Wahr for discussions and help, and Y. Xu for editorial assistance. The figures are prepared using the GMT graphics package (Wessel and Smith, EOS, 1991).

Author information

Authors and Affiliations

Authors

Contributions

X.W. formulated the project, conducted the inverse analysis and wrote the paper. M.B.H. produced the JPL GPS time series and participated in work formulation. H.S. and B.L.A.V. provided the viscoelastic deformation code and contributed to forward modelling of GIA. R.S.G. participated in work formulation and worked on consistency of gravity and polar-wander data. E.R.I. provided the IJ05 model and contributed to work formulation. D.D., A.W.M. and S.E.O. contributed to GPS data processing. All authors read the manuscript and discussed the results.

Corresponding author

Correspondence to Xiaoping Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1552 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Heflin, M., Schotman, H. et al. Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nature Geosci 3, 642–646 (2010). https://doi.org/10.1038/ngeo938

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo938

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing