Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface deformation and slab–mantle interaction during Banda arc subduction rollback

Abstract

The spectacularly curved Banda arc comprises young oceanic crust1,2 enclosed by a volcanic inner arc, outer arc islands and a trough parallel to the Australian continental margin3,4,5. Strong seismic activity in the upper mantle defines a folded surface6,7, for which there are two contrasting explanations: deformation of a single slab5,8 or two separate slabs subducting from the north and south6,9. Here we combine seismic tomography with the plate tectonic evolution of the region to infer that the Banda arc results from subduction of a single slab. Our palaeogeographic reconstruction shows that a Jurassic embayment, which consisted of dense oceanic lithosphere enclosed by continental crust, once existed within the Australian plate. Banda subduction began about 15 million years ago when active Java subduction tore eastwards into the embayment. The present morphology of the subducting slab is only partially controlled by the shape of the embayment. As the Australian plate moved northward at a high speed of about 7 cm yr−1, the Banda oceanic slab rolled back towards the south–southeast accompanied by active delamination separating the crust from the denser mantle. Increasing resistance of the mantle to plate motion progressively folded the slab and caused strong deformation of the crust. The Banda arc represents an outstanding example of large-scale deformation of the Earth’s crust in response to coupling between the crust, slab and surrounding mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Banda arc and surrounding region.
Figure 2: Tomographic images of the Banda slab.
Figure 3: Evolution of Banda subduction in the absolute plate motion frame.

Similar content being viewed by others

References

  1. Hinschberger, F. et al. Magnetic lineations constraints for the back-arc opening of the late Neogene South Banda Basin (eastern Indonesia). Tectonophysics 333, 47–59 (2001).

    Article  Google Scholar 

  2. Hinschberger, F. et al. Origine et évolution du bassin Nord-Banda (Indonésie): Apport des données magnetiques. C. R. Acad. Sci., Paris 331, 507–514 (2000).

    Article  Google Scholar 

  3. Carter, D. J., Audley-Charles, M. G. & Barber, A. J. Stratigraphical analysis of island arc-continental margin collision in eastern Indonesia. J. Geol. Soc. Lond. 132, 179–189 (1976).

    Article  Google Scholar 

  4. Bowin, C. et al. Arc-continent collision in the Banda Sea region. Am. Assoc. Petrol. Geol. Bull. 64, 868–918 (1980).

    Google Scholar 

  5. Hamilton, W. Tectonics of the Indonesian Region Vol. 1078 (US Geol. Soc. Prof. Pap., 1979).

    Book  Google Scholar 

  6. Cardwell, R. K. & Isacks, B. L. Geometry of the subducted lithosphere beneath the Banda Sea in eastern Indonesia from seismicity and fault plane solutions. J. Geophys. Res. 83, 2825–2838 (1978).

    Article  Google Scholar 

  7. Das, S. Seismicity gaps and the shape of the seismic zone in the Banda Sea region from relocated hypocentres. J. Geophys. Res. 109, B12303 (2004).

    Article  Google Scholar 

  8. Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–434 (2002).

    Article  Google Scholar 

  9. McCaffrey, R. Seismological constraints and speculations on Banda arc tectonics. Neth. J. Sea Res. 24, 141–152 (1989).

    Article  Google Scholar 

  10. Hall, R. & Wilson, M. E. J. Neogene sutures in eastern Indonesia. J. Asian Earth Sci. 18, 787–814 (2000).

    Google Scholar 

  11. Hinschberger, F. et al. Late Cenozoic geodynamic evolution of eastern Indonesia. Tectonophysics 404, 91–118 (2005).

    Article  Google Scholar 

  12. Bock, Y. et al. Crustal motion in Indonesia from Global Positioning System measurements. J. Geophys. Res. 108, 2367 (2003).

    Article  Google Scholar 

  13. Stevens, C. W. et al. in Plate Boundary Zones (eds Stein, S. & Freymeuller, J. T.) 87–99 (Geodynamic Series, Vol. 30, American Geophysical Union, 2002).

    Google Scholar 

  14. Audley-Charles, M. G., Carter, D. J. & Milsom, J. Tectonic development of eastern Indonesia in relation to Gondwanaland dispersal. Nature 239, 35–39 (1972).

    Google Scholar 

  15. Charlton, T. R. Tertiary evolution of the Eastern Indonesia collision complex. J. Asian Earth Sci. 18, 603–631 (2000).

    Article  Google Scholar 

  16. Widyantoro, S. & van der Hilst, R. V. Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophys. J. Int. 130, 167–182 (1997).

    Article  Google Scholar 

  17. Smyth, H. R., Hall, R. & Nichols, G. J. in Formation and Applications of the Sedimentary Record in Arc Collision Zones Vol. 436 (eds Draut A. E., et al.) 199–222 (Geol. Soc. Am. Spec. Pap., 2008).

    Google Scholar 

  18. Abbott, M. J. & Chamalaun, F. H. in The Geology and Tectonics of Eastern Indonesia Vol. 2 (eds Barber, A. J. & Wiryosujono S.) 253–268 Special Publication (Geol. Res. Dev. Centre Spec. Publ., 1981).

    Google Scholar 

  19. Macpherson, C. G. & Hall, R. in The Timing and Location of Major Ore Deposits in an Evolving Orogen Vol. 204 (eds Blundell D. J. et al.) 49–67 (Geol. Soc. Lond. Spec. Publ., 2002).

    Google Scholar 

  20. Audley-Charles, M. G., Carter, D. J., Barber, A. J., Norvick, M. S. & Tjokrosapoetro, S. Reinterpretation of the geology of Seram: Implications for the Banda Arc and northern Australia. J. Geol. Soc. Lond. 136, 547–568 (1979).

    Article  Google Scholar 

  21. Norvick, M. S. The tectonic history of the Banda Arcs, eastern Indonesia: A review. J. Geol. Soc. Lond. 136, 519–527 (1979).

    Article  Google Scholar 

  22. Pigram, C. J. & Panggabean, H. Rifting of the northern margin of the Australian continent and the origin of some microcontinents in eastern Indonesia. Tectonophysics 107, 331–353 (1984).

    Article  Google Scholar 

  23. Fullerton, L. G., Sager, W. W. & Handschumacher, D. W. Late Jurassic–early Cretaceous evolution of the eastern Indian Ocean adjacent to northwest Australia. J. Geophys. Res. 94, 2937–2954 (1989).

    Article  Google Scholar 

  24. Powell, C. M., Roots, S. R. & Veevers, J. J. Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics 155, 261–283 (1988).

    Article  Google Scholar 

  25. Hall, R., Clements, B. & Smyth, H. R. Proc. Indonesian Petroleum Association, 33rd Annual Convention IPA09-G-134 (Indonesian Petrol. Assoc., 2009).

    Google Scholar 

  26. Müller, R., Royer, J-Y. & Lawver, L. A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21, 275–278 (1993).

    Article  Google Scholar 

  27. Sandiford, M. Seismic moment release during slab rupture beneath the Banda Sea. Geophys. J. Int. 174, 659–671 (2008).

    Article  Google Scholar 

  28. Pairault, A. A., Hall, R. & Elders, C. F. Structural styles and tectonic evolution of the Seram Trough, Indonesia. Mar. Petrol. Geol. 20, 1141–1160 (2003).

    Article  Google Scholar 

  29. Bijwaard, H. & Spakman, W. Nonlinear global P-wave tomography by iterated linearized inversion. Geophys. J. Int. 141, 71–82 (2000).

    Article  Google Scholar 

  30. Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work (W.S.) was conducted under the programme of the Netherlands Research Centre of Integrated Solid Earth Sciences (ISES). This paper contributes to the ESG EUROCORES programme TOPO-EUROPE. R.H. is supported by the Royal Holloway SE Asia Research Group, which has been funded over many years by a consortium of oil companies.

Author information

Authors and Affiliations

Authors

Contributions

R.H. was responsible for tectonic reconstructions. W.S. was responsible for tomography and global positioning system analysis. Both authors contributed equally to development of ideas, interpretation and production of figures and manuscript.

Corresponding authors

Correspondence to Wim Spakman or Robert Hall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1285 kb)

Supplementary Movies

Supplementary Movie 1 (MOV 4859 kb)

Supplementary Movies

Supplementary Movie 2 (MOV 6926 kb)

Supplementary Movies

Supplementary Movie 3 (MOV 1154 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spakman, W., Hall, R. Surface deformation and slab–mantle interaction during Banda arc subduction rollback. Nature Geosci 3, 562–566 (2010). https://doi.org/10.1038/ngeo917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing