Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Methane-derived hydrocarbons produced under upper-mantle conditions

Abstract

There is widespread evidence that petroleum originates from biological processes1,2,3. Whether hydrocarbons can also be produced from abiogenic precursor molecules under the high-pressure, high-temperature conditions characteristic of the upper mantle remains an open question. It has been proposed that hydrocarbons generated in the upper mantle could be transported through deep faults to shallower regions in the Earth’s crust, and contribute to petroleum reserves4,5. Here we use in situ Raman spectroscopy in laser-heated diamond anvil cells to monitor the chemical reactivity of methane and ethane under upper-mantle conditions. We show that when methane is exposed to pressures higher than 2 GPa, and to temperatures in the range of 1,000–1,500 K, it partially reacts to form saturated hydrocarbons containing 2–4 carbons (ethane, propane and butane) and molecular hydrogen and graphite. Conversely, exposure of ethane to similar conditions results in the production of methane, suggesting that the synthesis of saturated hydrocarbons is reversible. Our results support the suggestion that hydrocarbons heavier than methane can be produced by abiogenic processes in the upper mantle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Laser-heating experiment.
Figure 2: Representative Raman spectra.
Figure 3: P–T–fO2 conditions in our DAC experiments and in the upper mantle.

References

  1. Tissot, B. P. & Welte, D. H. Petroleum Formation and Occurrence (Springer, 1984).

    Book  Google Scholar 

  2. Whiticar, M. J., Faber, E. & Schoell, M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs acetate fermentation—isotope evidence. Geochim. Cosmochim. Acta 50, 693–709 (1986).

    Article  Google Scholar 

  3. Schoell, M. Multiple origins of methane in the earth. Chem. Geol. 71, 1–10 (1988).

    Article  Google Scholar 

  4. Porfir’ev, V. B. Inorganic origin of petroleum. Am. Assoc. Petrol. Geol. Bull. 58, 3–33 (1974).

    Google Scholar 

  5. Krayushkin, V. A. Oil and gas fields of the abyssal genesis. D. I. Mendeleev J. All-Union. Chem. Soc. 31, 241–252 (1986).

    Google Scholar 

  6. Scott, H. P., Hemley, R. J. & Mao, H. et al. Generation of methane in the Earth’s mantle: In situ high pressure–temperature measurements of carbonate reduction. Proc. Natl Acad. Sci. USA. 101, 14023–14026 (2004).

    Article  Google Scholar 

  7. Kenney, J. F., Kutcherov, V. G., Bendeliani, N. A. & Alekseev, V. A. The evolution of multicomponent systems at high pressures: VI. The thermodynamic stability of the hydrogen–carbon system: The genesis of hydrocarbons and the origin of petroleum. Proc. Natl Acad. Sci. USA. 99, 10976–10981 (2002).

    Article  Google Scholar 

  8. Kutcherov, V. G., Bendeliani, N. A., Alekseev, V. A. & Kenney, J. F. Synthesis of hydrocarbons from minerals at pressures up to 5 GPa. Dokl. Akad. Nauk [in Russian] 387, 789–792 (2002).

    Google Scholar 

  9. Chen, J. Y., Jin, L. J., Dong, J. P., Zheng, H. F. & Liu, G. Y. Methane formation from CaCO3 reduction catalyzed by high pressure. Chin. Chem. Lett. 19, 475–478 (2008).

    Article  Google Scholar 

  10. Nellis, W. J., Ree, F. H., Thiel, M. Van & Mitchell, A. C. Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar). J. Chem. Phys. 75, 3055–3063 (1981).

    Article  Google Scholar 

  11. Nellis, W. J., Hamilton, D. C. & Mitchell, A. C. Electrical conductivities of methane, benzene, and polybutene shock compressed to 60 GPa (600 kbar). J. Chem. Phys. 115, 1015–1019 (2001).

    Article  Google Scholar 

  12. Ross, M. The ice layer in Uranus and Neptune—diamonds in the sky. Nature 292, 435–436 (1981).

    Article  Google Scholar 

  13. Ancilotto, F., Chiarotti, G. L., Scandolo, S. & Tosatti, E. Dissociation of methane into hydrocarbons at extreme (planetary) pressure and temperature. Science 275, 1288–1290 (1997).

    Article  Google Scholar 

  14. Kress, J. D., Bickham, S. R., Collins, L. A., Holian, B. L. & Goedecker, S. Tight-binding molecular dynamics of shock waves in methane. Phys. Rev. Lett. 83, 3896–3899 (1999).

    Article  Google Scholar 

  15. Culler, T. S. & Schiferl, D. New chemical reactions in methane at high temperatures and pressures. J. Phys. Chem. 97, 703–706 (1993).

    Article  Google Scholar 

  16. Benedetti, L. R. et al. Dissociation of CH4 at high pressures and temperatures: Diamond formation in giant planet interiors. Science 286, 100–102 (1999).

    Article  Google Scholar 

  17. Zerr, A., Serghiou, G., Boehler, R. & Ross, M. Decomposition of alkanes at high pressure and temperatures. High Press. Res. 26, 23–32 (2006).

    Article  Google Scholar 

  18. Hemley, R. J. & Mao, H. K. in Proc. 13th APS Conf. on Shock-compression of Condensed Matter (eds Furnish, M. D., Gupta, Y. M. & Forbes, J. W.) 17–26 (AIP, 2004).

    Google Scholar 

  19. Chen, J. Y., Jin, L. J., Dong, J. P. & Zheng, H. F. In situ Raman spectroscopy study on dissociation of methane at high temperatures and at high pressures. Chin. Phys. Lett. 25, 780–782 (2008).

    Article  Google Scholar 

  20. Hirai, H., Konagai, K., Kawamura, T., Yamamoto, Y. & Yagi, T. Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets. Phys. Earth Planet. Inter. 174, 242–246 (2009).

    Article  Google Scholar 

  21. Somayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. High-pressure compounds in methane–hydrogen mixtures. Science 271, 1400–1402 (1996).

    Article  Google Scholar 

  22. Huebner, J. S. in Research Techniques for High Pressure and High Temperature (ed. Ulmer, G. C.) 123–177 (Springer, 1972).

    Google Scholar 

  23. Sherwood Lollar, B. S. et al. Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface. Chem. Geol. 226, 328–339 (2006).

    Article  Google Scholar 

  24. Goncharov, A. F. et al. Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005).

    Article  Google Scholar 

  25. Yagi, T. & Suzuki, H. Melting curve of methane to 4.8 GPa determined by the Ruby pressure–temperature marker. Proc. Japan Acad. Ser. B 66, 167–172 (1990).

    Article  Google Scholar 

  26. Woodland, A. B. & Koch, M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth. Planet. Sci. Lett. 214, 295–310 (2003).

    Article  Google Scholar 

  27. McCammon, C. & Kopylova, M. G. A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib. Mineral. Petrol. 148, 55–68 (2004).

    Article  Google Scholar 

  28. Simakov, S. K. Redox state of eclogites and peridotites from sub-cratonic upper mantle and a connection with diamond genesis. Contrib. Mineral. Petrol. 151, 282–296 (2006).

    Article  Google Scholar 

  29. Pollack, H. N. & Chapman, D. S. On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38, 279–296 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Litasov, Y. Fei, J. C. Crowhurst, M. Somayazulu, V. Struzhkin, R. Cohen, D. Foustoukos, J. Montoya, T. Strobel and R. J. Hemley for valuable information, comments and discussions. We thank S. Sinogeikin for help with X-ray diffraction experiments. A.K. acknowledges the support from INTAS through YSF Ref. No. 06-1000014-6546. V.G.K. acknowledges the support from INTAS Ref. No. 06-1000013-8750. We acknowledge support by the US Department of Energy (DOE)/National Nuclear Security Agency through the Carnegie/DOE Alliance Center, NSF- EAR, the W. M. Keck Foundation and the Carnegie Institution of Washington. Use of the HPCAT facility (Carnegie Institution of Washington) was supported by DOE-BES, DOE-NNSA (CDAC), NSF, DOD–TACOM and the W. M. Keck Foundation. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Contributions

V.G.K designed the study. A.F.G. and A.K. designed the experiments. A.K. and A.F.G. carried out the experiments and reduced the data. A.K. carried out the data analysis. A.F.G. wrote the manuscript with substantial contributions made by the other authors. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to Alexander F. Goncharov.

Supplementary information

Supplementary Information

Supplementary Information (PDF 627 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesnikov, A., Kutcherov, V. & Goncharov, A. Methane-derived hydrocarbons produced under upper-mantle conditions. Nature Geosci 2, 566–570 (2009). https://doi.org/10.1038/ngeo591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing